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264 Vector Space Rn

5.1 Subspaces and Spanning

In Section 2.2 we introduced the set Rn of all n-tuples (called vectors), and began our investigation of
the matrix transformations Rn →Rm given by matrix multiplication by an m×n matrix. Particular
attention was paid to the euclidean plane R2 where certain simple geometric transformations were
seen to be matrix transformations. Then in Section 2.6 we introduced linear transformations, showed
that they are all matrix transformations, and found the matrices of rotations and reflections in R2.
We returned to this in Section 4.4 where we showed that projections, reflections, and rotations of
R2 and R3 were all linear, and where we related areas and volumes to determinants.

In this chapter we investigate Rn in full generality, and introduce some of the most important
concepts and methods in linear algebra. The n-tuples in Rn will continue to be denoted x, y, and
so on, and will be written as rows or columns depending on the context.

Subspaces of Rn

Definition 5.1 Subspace of Rn

A set1U of vectors in Rn is called a subspace of Rn if it satisfies the following properties:

S1. The zero vector 0 ∈U .

S2. If x ∈U and y ∈U , then x+y ∈U .

S3. If x ∈U , then ax ∈U for every real number a.

We say that the subset U is closed under addition if S2 holds, and that U is closed under
scalar multiplication if S3 holds.

Clearly Rn is a subspace of itself, and this chapter is about these subspaces and their properties.
The set U = {0}, consisting of only the zero vector, is also a subspace because 0+0 = 0 and a0 = 0
for each a in R; it is called the zero subspace. Any subspace of Rn other than {0} or Rn is called
a proper subspace.

y

z

x

n

M

We saw in Section 4.2 that every plane M through the origin in
R3 has equation ax+ by+ cz = 0 where a, b, and c are not all zero.

Here n =

 a
b
c

 is a normal for the plane and

M = {v in R3 | n ·v = 0}

1We use the language of sets. Informally, a set X is a collection of objects, called the elements of the set. The
fact that x is an element of X is denoted x ∈ X . Two sets X and Y are called equal (written X = Y ) if they have the
same elements. If every element of X is in the set Y , we say that X is a subset of Y , and write X ⊆ Y . Hence X ⊆ Y
and Y ⊆ X both hold if and only if X = Y .
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where v =

 x
y
z

 and n · v denotes the dot product introduced in

Section 2.2 (see the diagram).2 Then M is a subspace of R3. Indeed
we show that M satisfies S1, S2, and S3 as follows:

S1. 0 ∈ M because n ·0 = 0;

S2. If v ∈ M and v1 ∈ M , then n · (v+v1) = n ·v+n ·v1 = 0+0 = 0 , so v+v1 ∈ M;

S3. If v ∈ M , then n · (av) = a(n ·v) = a(0) = 0 , so av ∈ M.

This proves the first part of

Example 5.1.1

y

z

x

d
L

Planes and lines through the origin in R3 are all subspaces
of R3.

Solution. We dealt with planes above. If L is a line through
the origin with direction vector d, then L = {td | t ∈ R}
(see the diagram). We leave it as an exercise to verify that L

satisfies S1, S2, and S3.

Example 5.1.1 shows that lines through the origin in R2 are subspaces; in fact, they are the only
proper subspaces of R2 (Exercise 5.1.24). Indeed, we shall see in Example 5.2.14 that lines and
planes through the origin in R3 are the only proper subspaces of R3. Thus the geometry of lines
and planes through the origin is captured by the subspace concept. (Note that every line or plane
is just a translation of one of these.)

Subspaces can also be used to describe important features of an m×n matrix A. The null space
of A, denoted null A, and the image space of A, denoted im A, are defined by

null A = {x ∈ Rn | Ax = 0} and im A = {Ax | x ∈ Rn}

In the language of Chapter 2, null A consists of all solutions x in Rn of the homogeneous system
Ax = 0, and im A is the set of all vectors y in Rm such that Ax = y has a solution x. Note that x is
in null A if it satisfies the condition Ax = 0, while im A consists of vectors of the form Ax for some
x in Rn. These two ways to describe subsets occur frequently.

2We are using set notation here. In general {q | p} means the set of all objects q with property p.
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Example 5.1.2

If A is an m×n matrix, then:

1. null A is a subspace of Rn.

2. im A is a subspace of Rm.

Solution.

1. The zero vector 0 ∈ Rn lies in null A because A0 = 0.3If x and x1 are in null A, then
x+x1 and ax are in null A because they satisfy the required condition:

A(x+x1) = Ax+Ax1 = 0+0 = 0 and A(ax) = a(Ax) = a0 = 0

Hence null A satisfies S1, S2, and S3, and so is a subspace of Rn.

2. The zero vector 0 ∈ Rm lies in im A because 0 = A0. Suppose that y and y1 are in
im A, say y = Ax and y1 = Ax1 where x and x1 are in Rn. Then

y+y1 = Ax+Ax1 = A(x+x1) and ay = a(Ax) = A(ax)

show that y+y1 and ay are both in im A (they have the required form). Hence im A
is a subspace of Rm.

There are other important subspaces associated with a matrix A that clarify basic properties of
A. If A is an n×n matrix and λ is any number, let

Eλ (A) = {x ∈ Rn | Ax = λx}

A vector x is in Eλ (A) if and only if (λ I −A)x = 0, so Example 5.1.2 gives:

Example 5.1.3

Eλ (A) = null (λ I −A) is a subspace of Rn for each n×n matrix A and number λ .

Eλ (A) is called the eigenspace of A corresponding to λ . The reason for the name is that, in the
terminology of Section 3.3, λ is an eigenvalue of A if Eλ (A) 6= {0}. In this case the nonzero vectors
in Eλ (A) are called the eigenvectors of A corresponding to λ .

The reader should not get the impression that every subset of Rn is a subspace. For example:

U1 =

{[
x
y

]∣∣∣∣x ≥ 0
}

satisfies S1 and S2, but not S3;

U2 =

{[
x
y

]∣∣∣∣x2 = y2
}

satisfies S1 and S3, but not S2;

Hence neither U1 nor U2 is a subspace of R2. (However, see Exercise 5.1.20.)
3We are using 0 to represent the zero vector in both Rm and Rn. This abuse of notation is common and causes

no confusion once everybody knows what is going on.
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Spanning Sets

Let v and w be two nonzero, nonparallel vectors in R3 with their tails at the origin. The plane
M through the origin containing these vectors is described in Section 4.2 by saying that n = v×w
is a normal for M, and that M consists of all vectors p such that n ·p = 0.4 While this is a very
useful way to look at planes, there is another approach that is at least as useful in R3 and, more
importantly, works for all subspaces of Rn for any n ≥ 1.

0
v

av

w bw

p

M

The idea is as follows: Observe that, by the diagram, a vector p
is in M if and only if it has the form

p = av+bw

for certain real numbers a and b (we say that p is a linear combination
of v and w). Hence we can describe M as

M = {ax+bw | a, b ∈ R}.5

and we say that {v, w} is a spanning set for M. It is this notion of a spanning set that provides a
way to describe all subspaces of Rn.

As in Section 1.3, given vectors x1, x2, . . . , xk in Rn, a vector of the form

t1x1 + t2x2 + · · ·+ tkxk where the ti are scalars

is called a linear combination of the xi, and ti is called the coefficient of xi in the linear
combination.

Definition 5.2 Linear Combinations and Span in Rn

The set of all such linear combinations is called the span of the xi and is denoted

span{x1, x2, . . . , xk}= {t1x1 + t2x2 + · · ·+ tkxk | ti in R}

If V = span{x1, x2, . . . , xk}, we say that V is spanned by the vectors x1, x2, . . . , xk, and
that the vectors x1, x2, . . . , xk span the space V .

Here are two examples:
span{x}= {tx | t ∈ R}

which we write as span{x}= Rx for simplicity.

span{x, y}= {rx+ sy | r, s ∈ R}

In particular, the above discussion shows that, if v and w are two nonzero, nonparallel vectors in
R3, then

M = span{v, w}
4The vector n = v×w is nonzero because v and w are not parallel.
5In particular, this implies that any vector p orthogonal to v×w must be a linear combination p = av+bw of v

and w for some a and b. Can you prove this directly?
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is the plane in R3 containing v and w. Moreover, if d is any nonzero vector in R3 (or R2), then
L = span{v}= {td | t ∈ R}= Rd

is the line with direction vector d. Hence lines and planes can both be described in terms of spanning
sets.

Example 5.1.4

Let x = (2, −1, 2, 1) and y = (3, 4, −1, 1) in R4. Determine whether p = (0, −11, 8, 1) or
q = (2, 3, 1, 2) are in U = span{x, y}.

Solution. The vector p is in U if and only if p = sx+ ty for scalars s and t. Equating
components gives equations

2s+3t = 0, −s+4t =−11, 2s− t = 8, and s+ t = 1

This linear system has solution s = 3 and t =−2, so p is in U . On the other hand, asking
that q = sx+ ty leads to equations

2s+3t = 2, −s+4t = 3, 2s− t = 1, and s+ t = 2

and this system has no solution. So q does not lie in U .

Theorem 5.1.1: Span Theorem

Let U = span{x1, x2, . . . , xk} in Rn. Then:

1. U is a subspace of Rn containing each xi.

2. If W is a subspace of Rn and each xi ∈W , then U ⊆W .

Proof.
1. The zero vector 0 is in U because 0 = 0x1 +0x2 + · · ·+0xk is a linear combination of the xi.

If x = t1x1 + t2x2 + · · ·+ tkxk and y = s1x1 + s2x2 + · · ·+ skxk are in U , then x+y and ax are
in U because

x+y = (t1 + s1)x1 +(t2 + s2)x2 + · · ·+(tk + sk)xk, and
ax = (at1)x1 +(at2)x2 + · · ·+(atk)xk

Finally each xi is in U (for example, x2 = 0x1+1x2+ · · ·+0xk) so S1, S2, and S3 are satisfied
for U , proving (1).

2. Let x = t1x1 + t2x2 + · · ·+ tkxk where the ti are scalars and each xi ∈ W . Then each tixi ∈ W
because W satisfies S3. But then x ∈W because W satisfies S2 (verify). This proves (2).

Condition (2) in Theorem 5.1.1 can be expressed by saying that span{x1, x2, . . . , xk} is the
smallest subspace of Rn that contains each xi. This is useful for showing that two subspaces U and
W are equal, since this amounts to showing that both U ⊆ W and W ⊆ U . Here is an example of
how it is used.
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Example 5.1.5

If x and y are in Rn, show that span{x, y}= span{x+y, x−y}.

Solution. Since both x+y and x−y are in span{x, y}, Theorem 5.1.1 gives

span{x+y, x−y} ⊆ span{x, y}

But x = 1
2(x+y)+ 1

2(x−y) and y = 1
2(x+y)− 1

2(x−y) are both in span{x+y, x−y}, so

span{x, y} ⊆ span{x+y, x−y}

again by Theorem 5.1.1. Thus span{x, y}= span{x+y, x−y}, as desired.

It turns out that many important subspaces are best described by giving a spanning set. Here
are three examples, beginning with an important spanning set for Rn itself. Column j of the
n× n identity matrix In is denoted e j and called the jth coordinate vector in Rn, and the set

{e1, e2, . . . , en} is called the standard basis of Rn. If x =


x1
x2

...
xn

 is any vector in Rn, then

x = x1e1 + x2e2 + · · ·+ xnen, as the reader can verify. This proves:

Example 5.1.6

Rn = span{e1, e2, . . . , en} where e1, e2, . . . , en are the columns of In.

If A is an m×n matrix A, the next two examples show that it is a routine matter to find spanning
sets for null A and im A.

Example 5.1.7

Given an m×n matrix A, let x1, x2, . . . , xk denote the basic solutions to the system Ax = 0
given by the gaussian algorithm. Then

null A = span{x1, x2, . . . , xk}

Solution. If x ∈ null A, then Ax = 0 so Theorem 1.3.2 shows that x is a linear combination
of the basic solutions; that is, null A ⊆ span{x1, x2, . . . , xk}. On the other hand, if x is in
span{x1, x2, . . . , xk}, then x = t1x1 + t2x2 + · · ·+ tkxk for scalars ti, so

Ax = t1Ax1 + t2Ax2 + · · ·+ tkAxk = t10+ t20+ · · ·+ tk0 = 0

This shows that x ∈ null A, and hence that span{x1, x2, . . . , xk} ⊆ null A. Thus we have
equality.
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Example 5.1.8

Let c1, c2, . . . , cn denote the columns of the m×n matrix A. Then

im A = span{c1, c2, . . . , cn}

Solution. If {e1, e2, . . . , en} is the standard basis of Rn, observe that[
Ae1 Ae2 · · · Aen

]
= A

[
e1 e2 · · · en

]
= AIn = A =

[
c1 c2 · · ·cn

]
.

Hence ci = Aei is in im A for each i, so span{c1, c2, . . . , cn} ⊆ im A.

Conversely, let y be in im A, say y = Ax for some x in Rn. If x =


x1
x2
...

xn

, then

Definition 2.5 gives

y = Ax = x1c1 + x2c2 + · · ·+ xncn is in span{c1, c2, . . . , cn}

This shows that im A ⊆ span{c1, c2, . . . , cn}, and the result follows.

Exercises for 5.1

We often write vectors in Rn as rows.
Exercise 5.1.1 In each case determine whether U
is a subspace of R3. Support your answer.

a. U = {(1, s, t) | s and t in R}.

b. U = {(0, s, t) | s and t in R}.

c. U = {(r, s, t) | r, s, and t in R,
− r+3s+2t = 0}.

d. U = {(r, 3s, r−2) | r and s in R}.

e. U = {(r, 0, s) | r2 + s2 = 0, r and s in R}.

f. U = {(2r, −s2, t) | r, s, and t in R}.

b. Yes

d. No

f. No.

Exercise 5.1.2 In each case determine if x lies in
U = span{y, z}. If x is in U , write it as a linear
combination of y and z; if x is not in U , show why
not.

a. x = (2, −1, 0, 1), y = (1, 0, 0, 1), and
z = (0, 1, 0, 1).

b. x = (1, 2, 15, 11), y = (2, −1, 0, 2), and
z = (1, −1, −3, 1).

c. x = (8, 3, −13, 20), y = (2, 1, −3, 5), and
z = (−1, 0, 2, −3).

d. x = (2, 5, 8, 3), y = (2, −1, 0, 5), and
z = (−1, 2, 2, −3).
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b. No

d. Yes, x = 3y+4z.

Exercise 5.1.3 In each case determine if the given
vectors span R4. Support your answer.

a. {(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}.

b. {(1, 3, −5, 0), (−2, 1, 0, 0), (0, 2, 1, −1),
(1, −4, 5, 0)}.

b. No

Exercise 5.1.4 Is it possible that
{(1, 2, 0), (2, 0, 3)} can span the subspace
U = {(r, s, 0) | r and s in R}? Defend your answer.

Exercise 5.1.5 Give a spanning set for the zero
subspace {0} of Rn.

Exercise 5.1.6 Is R2 a subspace of R3? Defend
your answer.

Exercise 5.1.7 If U = span{x, y, z} in Rn, show
that U = span{x+ tz, y, z} for every t in R.

Exercise 5.1.8 If U = span{x, y, z} in Rn, show
that U = span{x+y, y+z, z+x}.

Exercise 5.1.9 If a 6= 0 is a scalar, show that
span{ax}= span{x} for every vector x in Rn.

Exercise 5.1.10 If a1, a2, . . . , ak are nonzero
scalars, show that span{a1x1, a2x2, . . . , akxk} =
span{x1, x2, . . . , xk} for any vectors xi in Rn.

span{a1x1, a2x2, . . . , akxk} ⊆ span{x1, x2, . . . , xk}
by Theorem 5.1.1 because, for each i, aixi is in
span{x1, x2, . . . , xk}. Similarly, the fact that
xi = a−1

i (aixi) is in span{a1x1, a2x2, . . . , akxk}
for each i shows that span{x1, x2, . . . , xk} ⊆
span{a1x1, a2x2, . . . , akxk}, again by Theo-
rem 5.1.1.

Exercise 5.1.11 If x 6= 0 in Rn, determine all sub-
spaces of span{x}.

Exercise 5.1.12 Suppose that U =
span{x1, x2, . . . , xk} where each xi is in Rn. If A is an
m×n matrix and Axi = 0 for each i, show that Ay= 0
for every vector y in U .
If y = r1x1 + · · ·+ rkxk then Ay = r1(Ax1) + · · ·+
rk(Axk) = 0.

Exercise 5.1.13 If A is an m × n matrix, show
that, for each invertible m×m matrix U , null (A) =
null (UA).

Exercise 5.1.14 If A is an m×n matrix, show that,
for each invertible n×n matrix V , im (A) = im (AV ).

Exercise 5.1.15 Let U be a subspace of Rn, and
let x be a vector in Rn.

a. If ax is in U where a 6= 0 is a number, show
that x is in U .

b. If y and x+y are in U where y is a vector in
Rn, show that x is in U .

b. x = (x+y)−y = (x+y)+ (−y) is in U be-
cause U is a subspace and both x + y and
−y = (−1)y are in U .

Exercise 5.1.16 In each case either show that the
statement is true or give an example showing that it
is false.

a. If U 6= Rn is a subspace of Rn and x+y is in
U , then x and y are both in U .

b. If U is a subspace of Rn and rx is in U for all
r in R, then x is in U .

c. If U is a subspace of Rn and x is in U , then
−x is also in U .

d. If x is in U and U = span{y, z}, then U =
span{x, y, z}.

e. The empty set of vectors in Rn is a subspace
of Rn.

f.
[

0
1

]
is in span

{[
1
0

]
,
[

2
0

]}
.

b. True. x = 1x is in U .
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d. True. Always span{y, z} ⊆ span{x, y, z} by
Theorem 5.1.1. Since x is in span{x, y} we
have span{x, y, z} ⊆ span{y, z}, again by
Theorem 5.1.1.

f. False. a
[

1
0

]
+ b
[

2
0

]
=

[
a+2b

0

]
cannot

equal
[

0
1

]
.

Exercise 5.1.17

a. If A and B are m×n matrices, show that
U = {x in Rn | Ax = Bx} is a subspace of Rn.

b. What if A is m×n, B is k×n, and m 6= k?

Exercise 5.1.18 Suppose that x1, x2, . . . , xk
are vectors in Rn. If y = a1x1 + a2x2 + · · ·+ akxk
where a1 6= 0, show that span{x1 x2, . . . , xk} =
span{y1, x2, . . . , xk}.

Exercise 5.1.19 If U 6= {0} is a subspace of R,
show that U = R.

Exercise 5.1.20 Let U be a nonempty subset of
Rn. Show that U is a subspace if and only if S2 and
S3 hold.
If U is a subspace, then S2 and S3 certainly hold.
Conversely, assume that S2 and S3 hold for U . Since
U is nonempty, choose x in U . Then 0 = 0x is in U
by S3, so S1 also holds. This means that U is a
subspace.

Exercise 5.1.21 If S and T are nonempty sets of
vectors in Rn, and if S ⊆ T , show that span{S} ⊆
span{T}.

Exercise 5.1.22 Let U and W be subspaces
of Rn. Define their intersection U ∩ W and
their sum U +W as follows: U ∩W = {x ∈ Rn |
x belongs to both U and W}. U +W = {x ∈ Rn |
x is a sum of a vector in U
and a vector in W}.

a. Show that U ∩W is a subspace of Rn.

b. Show that U +W is a subspace of Rn.

b. The zero vector 0 is in U +W because 0 =
0+0. Let p and q be vectors in U +W , say
p = x1 + y1 and q = x2 + y2 where x1 and
x2 are in U , and y1 and y2 are in W . Then
p+q = (x1 +x2)+ (y1 +y2) is in U +W be-
cause x1+x2 is in U and y1+y2 is in W . Sim-
ilarly, a(p+q) = ap+ aq is in U +W for any
scalar a because ap is in U and aq is in W .
Hence U +W is indeed a subspace of Rn.

Exercise 5.1.23 Let P denote an invertible n× n
matrix. If λ is a number, show that

Eλ (PAP−1) = {Px | x is in Eλ (A)}

for each n×n matrix A.

Exercise 5.1.24 Show that every proper subspace
U of R2 is a line through the origin. [Hint: If d is a
nonzero vector in U , let L = Rd = {rd | r in R} de-
note the line with direction vector d. If u is in U
but not in L, argue geometrically that every vector
v in R2 is a linear combination of u and d.]
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5.2 Independence and Dimension

Some spanning sets are better than others. If U = span{x1, x2, . . . , xk} is a subspace of Rn,
then every vector in U can be written as a linear combination of the xi in at least one way. Our
interest here is in spanning sets where each vector in U has a exactly one representation as a linear
combination of these vectors.

Linear Independence

Given x1, x2, . . . , xk in Rn, suppose that two linear combinations are equal:

r1x1 + r2x2 + · · ·+ rkxk = s1x1 + s2x2 + · · ·+ skxk

We are looking for a condition on the set {x1, x2, . . . , xk} of vectors that guarantees that this
representation is unique; that is, ri = si for each i. Taking all terms to the left side gives

(r1 − s1)x1 +(r2 − s2)x2 + · · ·+(rk − sk)xk = 0

so the required condition is that this equation forces all the coefficients ri − si to be zero.

Definition 5.3 Linear Independence in Rn

With this in mind, we call a set {x1, x2, . . . , xk} of vectors linearly independent (or
simply independent) if it satisfies the following condition:

If t1x1 + t2x2 + · · ·+ tkxk = 0 then t1 = t2 = · · ·= tk = 0

We record the result of the above discussion for reference.

Theorem 5.2.1
If {x1, x2, . . . , xk} is an independent set of vectors in Rn, then every vector in
span{x1, x2, . . . , xk} has a unique representation as a linear combination of the xi.

It is useful to state the definition of independence in different language. Let us say that a linear
combination vanishes if it equals the zero vector, and call a linear combination trivial if every
coefficient is zero. Then the definition of independence can be compactly stated as follows:

A set of vectors is independent if and only if the only linear combination that vanishes
is the trivial one.

Hence we have a procedure for checking that a set of vectors is independent:
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Independence Test

To verify that a set {x1, x2, . . . , xk} of vectors in Rn is independent, proceed as follows:

1. Set a linear combination equal to zero: t1x1 + t2x2 + · · ·+ tkxk = 0.

2. Show that ti = 0 for each i (that is, the linear combination is trivial).

Of course, if some nontrivial linear combination vanishes, the vectors are not independent.

Example 5.2.1

Determine whether {(1, 0, −2, 5), (2, 1, 0, −1), (1, 1, 2, 1)} is independent in R4.

Solution. Suppose a linear combination vanishes:

r(1, 0, −2, 5)+ s(2, 1, 0, −1)+ t(1, 1, 2, 1) = (0, 0, 0, 0)

Equating corresponding entries gives a system of four equations:

r+2s+ t = 0, s+ t = 0, −2r+2t = 0, and 5r− s+ t = 0

The only solution is the trivial one r = s = t = 0 (verify), so these vectors are independent by
the independence test.

Example 5.2.2

Show that the standard basis {e1, e2, . . . , en} of Rn is independent.

Solution. The components of t1e1 + t2e2 + · · ·+ tnen are t1, t2, . . . , tn (see the discussion
preceding Example 5.1.6) So the linear combination vanishes if and only if each ti = 0.
Hence the independence test applies.

Example 5.2.3

If {x, y} is independent, show that {2x+3y, x−5y} is also independent.

Solution. If s(2x+3y)+ t(x−5y) = 0, collect terms to get (2s+ t)x+(3s−5t)y = 0. Since
{x, y} is independent this combination must be trivial; that is, 2s+ t = 0 and 3s−5t = 0.
These equations have only the trivial solution s = t = 0, as required.

Example 5.2.4

Show that the zero vector in Rn does not belong to any independent set.
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Solution. No set {0, x1, x2, . . . , xk} of vectors is independent because we have a
vanishing, nontrivial linear combination 1 ·0+0x1 +0x2 + · · ·+0xk = 0.

Example 5.2.5

Given x in Rn, show that {x} is independent if and only if x 6= 0.

Solution. A vanishing linear combination from {x} takes the form tx = 0, t in R. This
implies that t = 0 because x 6= 0.

The next example will be needed later.

Example 5.2.6

Show that the nonzero rows of a row-echelon matrix R are independent.

Solution. We illustrate the case with 3 leading 1s; the general case is analogous. Suppose R

has the form R =


0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 0

 where ∗ indicates a nonspecified number. Let R1,

R2, and R3 denote the nonzero rows of R. If t1R1 + t2R2 + t3R3 = 0 we show that t1 = 0, then
t2 = 0, and finally t3 = 0. The condition t1R1 + t2R2 + t3R3 = 0 becomes

(0, t1, ∗, ∗, ∗, ∗)+(0, 0, 0, t2, ∗, ∗)+(0, 0, 0, 0, t3, ∗) = (0, 0, 0, 0, 0, 0)

Equating second entries show that t1 = 0, so the condition becomes t2R2 + t3R3 = 0. Now the
same argument shows that t2 = 0. Finally, this gives t3R3 = 0 and we obtain t3 = 0.

A set of vectors in Rn is called linearly dependent (or simply dependent) if it is not linearly
independent, equivalently if some nontrivial linear combination vanishes.

Example 5.2.7

If v and w are nonzero vectors in R3, show that {v, w} is dependent if and only if v and w
are parallel.

Solution. If v and w are parallel, then one is a scalar multiple of the other
(Theorem 4.1.4), say v = aw for some scalar a. Then the nontrivial linear combination
v−aw = 0 vanishes, so {v, w} is dependent.
Conversely, if {v, w} is dependent, let sv+ tw = 0 be nontrivial, say s 6= 0. Then v =− t

sw
so v and w are parallel (by Theorem 4.1.4). A similar argument works if t 6= 0.

With this we can give a geometric description of what it means for a set {u, v, w} in R3 to
be independent. Note that this requirement means that {v, w} is also independent (av+bw = 0
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means that 0u+ av+ bw = 0), so M = span{v, w} is the plane containing v, w, and 0 (see the
discussion preceding Example 5.1.4). So we assume that {v, w} is independent in the following
example.

Example 5.2.8

u

v

w
M

{u, v, w} independent

u
v

w
M

{u, v, w} not independent

Let u, v, and w be nonzero vectors in R3 where {v, w}
independent. Show that {u, v, w} is independent if and only
if u is not in the plane M = span{v, w}. This is illustrated
in the diagrams.

Solution. If {u, v, w} is independent, suppose u is in the
plane M = span{v, w}, say u = av+bw, where a and b are
in R. Then 1u−av−bw = 0, contradicting the independence
of {u, v, w}.
On the other hand, suppose that u is not in M; we must show
that {u, v, w} is independent. If ru+ sv+ tw = 0 where r,
s, and t are in R3, then r = 0 since otherwise u =− s

r v+ −t
r w

is in M. But then sv+ tw = 0, so s = t = 0 by our assumption.
This shows that {u, v, w} is independent, as required.

By the inverse theorem, the following conditions are equivalent for an n×n matrix A:

1. A is invertible.

2. If Ax = 0 where x is in Rn, then x = 0.

3. Ax = b has a solution x for every vector b in Rn.

While condition 1 makes no sense if A is not square, conditions 2 and 3 are meaningful for any
matrix A and, in fact, are related to independence and spanning. Indeed, if c1, c2, . . . , cn are the

columns of A, and if we write x =


x1
x2

...
xn

, then

Ax = x1c1 + x2c2 + · · ·+ xncn

by Definition 2.5. Hence the definitions of independence and spanning show, respectively, that
condition 2 is equivalent to the independence of {c1, c2, . . . , cn} and condition 3 is equivalent to
the requirement that span{c1, c2, . . . , cn} = Rm. This discussion is summarized in the following
theorem:

Theorem 5.2.2
If A is an m×n matrix, let {c1, c2, . . . , cn} denote the columns of A.

1. {c1, c2, . . . , cn} is independent in Rm if and only if Ax = 0, x in Rn, implies x = 0.
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2. Rm = span{c1, c2, . . . , cn} if and only if Ax = b has a solution x for every vector b in
Rm.

For a square matrix A, Theorem 5.2.2 characterizes the invertibility of A in terms of the span-
ning and independence of its columns (see the discussion preceding Theorem 5.2.2). It is impor-
tant to be able to discuss these notions for rows. If x1, x2, . . . , xk are 1× n rows, we define
span{x1, x2, . . . , xk} to be the set of all linear combinations of the xi (as matrices), and we say
that {x1, x2, . . . , xk} is linearly independent if the only vanishing linear combination is the trivial
one (that is, if {xT

1 , xT
2 , . . . , xT

k } is independent in Rn, as the reader can verify).6

Theorem 5.2.3
The following are equivalent for an n×n matrix A:

1. A is invertible.

2. The columns of A are linearly independent.

3. The columns of A span Rn.

4. The rows of A are linearly independent.

5. The rows of A span the set of all 1×n rows.

Proof. Let c1, c2, . . . , cn denote the columns of A.
(1) ⇔ (2). By Theorem 2.4.5, A is invertible if and only if Ax = 0 implies x = 0; this holds if

and only if {c1, c2, . . . , cn} is independent by Theorem 5.2.2.
(1) ⇔ (3). Again by Theorem 2.4.5, A is invertible if and only if Ax = b has a solution for every

column B in Rn; this holds if and only if span{c1, c2, . . . , cn}= Rn by Theorem 5.2.2.
(1) ⇔ (4). The matrix A is invertible if and only if AT is invertible (by Corollary 2.4.1 to

Theorem 2.4.4); this in turn holds if and only if AT has independent columns (by (1) ⇔ (2)); finally,
this last statement holds if and only if A has independent rows (because the rows of A are the
transposes of the columns of AT ).

(1) ⇔ (5). The proof is similar to (1) ⇔ (4).

Example 5.2.9

Show that S = {(2, −2, 5), (−3, 1, 1), (2, 7, −4)} is independent in R3.

Solution. Consider the matrix A =

 2 −2 5
−3 1 1

2 7 −4

 with the vectors in S as its rows. A

routine computation shows that det A =−117 6= 0, so A is invertible. Hence S is
independent by Theorem 5.2.3. Note that Theorem 5.2.3 also shows that R3 = span S.

6It is best to view columns and rows as just two different notations for ordered n-tuples. This discussion will
become redundant in Chapter 6 where we define the general notion of a vector space.
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Dimension

It is common geometrical language to say that R3 is 3-dimensional, that planes are 2-dimensional
and that lines are 1-dimensional. The next theorem is a basic tool for clarifying this idea of
“dimension”. Its importance is difficult to exaggerate.

Theorem 5.2.4: Fundamental Theorem
Let U be a subspace of Rn. If U is spanned by m vectors, and if U contains k linearly
independent vectors, then k ≤ m.

This proof is given in Theorem 6.3.2 in much greater generality.

Definition 5.4 Basis of Rn

If U is a subspace of Rn, a set {x1, x2, . . . , xm} of vectors in U is called a basis of U if it
satisfies the following two conditions:

1. {x1, x2, . . . , xm} is linearly independent.

2. U = span{x1, x2, . . . , xm}.

The most remarkable result about bases7 is:

Theorem 5.2.5: Invariance Theorem
If {x1, x2, . . . , xm} and {y1, y2, . . . , yk} are bases of a subspace U of Rn, then m = k.

Proof. We have k ≤ m by the fundamental theorem because {x1, x2, . . . , xm} spans U , and
{y1, y2, . . . , yk} is independent. Similarly, by interchanging x’s and y’s we get m ≤ k. Hence
m = k.

The invariance theorem guarantees that there is no ambiguity in the following definition:

Definition 5.5 Dimension of a Subspace of Rn

If U is a subspace of Rn and {x1, x2, . . . , xm} is any basis of U , the number, m, of vectors
in the basis is called the dimension of U , denoted

dim U = m

The importance of the invariance theorem is that the dimension of U can be determined by counting
the number of vectors in any basis.8

7The plural of “basis” is “bases”.
8We will show in Theorem 5.2.6 that every subspace of Rn does indeed have a basis.
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Let {e1, e2, . . . , en} denote the standard basis of Rn, that is the set of columns of the identity
matrix. Then Rn = span{e1, e2, . . . , en} by Example 5.1.6, and {e1, e2, . . . , en} is independent
by Example 5.2.2. Hence it is indeed a basis of Rn in the present terminology, and we have

Example 5.2.10

dim (Rn) = n and {e1, e2, . . . , en} is a basis.

This agrees with our geometric sense that R2 is two-dimensional and R3 is three-dimensional.
It also says that R1 = R is one-dimensional, and {1} is a basis. Returning to subspaces of Rn, we
define

dim{0}= 0

This amounts to saying {0} has a basis containing no vectors. This makes sense because 0 cannot
belong to any independent set (Example 5.2.4).

Example 5.2.11

Let U =


 r

s
r

 | r, s in R

. Show that U is a subspace of R3, find a basis, and calculate

dim U .

Solution. Clearly,

 r
s
r

= ru+ sv where u =

 1
0
1

 and v =

 0
1
0

. It follows that

U = span{u, v}, and hence that U is a subspace of R3. Moreover, if ru+ sv = 0, then r
s
r

=

 0
0
0

 so r = s = 0. Hence {u, v} is independent, and so a basis of U . This means

dim U = 2.

Example 5.2.12

Let B = {x1, x2, . . . , xn} be a basis of Rn. If A is an invertible n×n matrix, then
D = {Ax1, Ax2, . . . , Axn} is also a basis of Rn.

Solution. Let x be a vector in Rn. Then A−1x is in Rn so, since B is a basis, we have
A−1x = t1x1 + t2x2 + · · ·+ tnxn for ti in R. Left multiplication by A gives
x = t1(Ax1)+ t2(Ax2)+ · · ·+ tn(Axn), and it follows that D spans Rn. To show independence,
let s1(Ax1)+ s2(Ax2)+ · · ·+ sn(Axn) = 0, where the si are in R. Then
A(s1x1 + s2x2 + · · ·+ snxn) = 0 so left multiplication by A−1 gives s1x1 + s2x2 + · · ·+ snxn = 0.
Now the independence of B shows that each si = 0, and so proves the independence of D.
Hence D is a basis of Rn.
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While we have found bases in many subspaces of Rn, we have not yet shown that every subspace
has a basis. This is part of the next theorem, the proof of which is deferred to Section 6.4 (Theorem
6.4.1) where it will be proved in more generality.

Theorem 5.2.6
Let U 6= {0} be a subspace of Rn. Then:

1. U has a basis and dim U ≤ n.

2. Any independent set in U can be enlarged (by adding vectors from the standard basis)
to a basis of U .

3. Any spanning set for U can be cut down (by deleting vectors) to a basis of U .

Example 5.2.13

Find a basis of R4 containing S = {u, v} where u = (0, 1, 2, 3) and v = (2, −1, 0, 1).

Solution. By Theorem 5.2.6 we can find such a basis by adding vectors from the standard
basis of R4 to S. If we try e1 = (1, 0, 0, 0), we find easily that {e1, u, v} is independent.
Now add another vector from the standard basis, say e2.
Again we find that B = {e1, e2, u, v} is independent. Since B has 4 = dim R4 vectors, then
B must span R4 by Theorem 5.2.7 below (or simply verify it directly). Hence B is a basis of
R4.

Theorem 5.2.6 has a number of useful consequences. Here is the first.

Theorem 5.2.7
Let U be a subspace of Rn where dim U = m and let B = {x1, x2, . . . , xm} be a set of m
vectors in U . Then B is independent if and only if B spans U .

Proof. Suppose B is independent. If B does not span U then, by Theorem 5.2.6, B can be enlarged
to a basis of U containing more than m vectors. This contradicts the invariance theorem because
dim U = m, so B spans U . Conversely, if B spans U but is not independent, then B can be cut down
to a basis of U containing fewer than m vectors, again a contradiction. So B is independent, as
required.

As we saw in Example 5.2.13, Theorem 5.2.7 is a “labour-saving” result. It asserts that, given
a subspace U of dimension m and a set B of exactly m vectors in U , to prove that B is a basis of
U it suffices to show either that B spans U or that B is independent. It is not necessary to verify
both properties.
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Theorem 5.2.8
Let U ⊆W be subspaces of Rn. Then:

1. dim U ≤ dim W .

2. If dim U = dim W , then U =W .
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Proof. Write dim W = k, and let B be a basis of U .

1. If dim U > k, then B is an independent set in W containing more than k vectors, contradicting
the fundamental theorem. So dim U ≤ k = dim W .

2. If dim U = k, then B is an independent set in W containing k = dim W vectors, so B spans W
by Theorem 5.2.7. Hence W = span B =U , proving (2).

It follows from Theorem 5.2.8 that if U is a subspace of Rn, then dim U is one of the integers
0, 1, 2, . . . , n, and that:

dim U = 0 if and only if U = {0},
dim U = n if and only if U = Rn

The other subspaces of Rn are called proper. The following example uses Theorem 5.2.8 to show
that the proper subspaces of R2 are the lines through the origin, while the proper subspaces of R3

are the lines and planes through the origin.

Example 5.2.14

1. If U is a subspace of R2 or R3, then dim U = 1 if and only if U is a line through the
origin.

2. If U is a subspace of R3, then dim U = 2 if and only if U is a plane through the origin.

Proof.

1. Since dim U = 1, let {u} be a basis of U . Then U = span{u}= {tu | t in R}, so U is the line
through the origin with direction vector u. Conversely each line L with direction vector d 6= 0
has the form L = {td | t in R}. Hence {d} is a basis of U , so U has dimension 1.

2. If U ⊆ R3 has dimension 2, let {v, w} be a basis of U . Then v and w are not parallel (by
Example 5.2.7) so n = v×w 6= 0. Let P = {x in R3 | n ·x = 0} denote the plane through the
origin with normal n. Then P is a subspace of R3 (Example 5.1.1) and both v and w lie in
P (they are orthogonal to n), so U = span{v, w} ⊆ P by Theorem 5.1.1. Hence

U ⊆ P ⊆ R3

Since dim U = 2 and dim (R3) = 3, it follows from Theorem 5.2.8 that dim P = 2 or 3, whence
P = U or R3. But P 6= R3 (for example, n is not in P) and so U = P is a plane through the
origin.
Conversely, if U is a plane through the origin, then dim U = 0, 1, 2, or 3 by Theorem 5.2.8.
But dim U 6= 0 or 3 because U 6= {0} and U 6= R3, and dim U 6= 1 by (1). So dim U = 2.

Note that this proof shows that if v and w are nonzero, nonparallel vectors in R3, then span{v, w}
is the plane with normal n = v×w. We gave a geometrical verification of this fact in Section 5.1.
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Exercises for 5.2

In Exercises 5.2.1-5.2.6 we write vectors Rn as
rows.
Exercise 5.2.1 Which of the following subsets are
independent? Support your answer.

a. {(1, −1, 0), (3, 2, −1), (3, 5, −2)} in R3

b. {(1, 1, 1), (1, −1, 1), (0, 0, 1)} in R3

c. {(1, −1, 1, −1), (2, 0, 1, 0), (0, −2, 1, −2)}
in R4

d. {(1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 1, 1),
(0, 1, 0, 1)} in R4

b. Yes. If r

 1
1
1

+ s

 1
1
1

+ t

 0
0
1

 =

 0
0
0

,

then r+s= 0, r−s= 0, and r+s+t = 0. These
equations give r = s = t = 0.

d. No. Indeed:


1
1
0
0

 −


1
0
1
0

 +


0
0
1
1

 −


0
1
0
1

=


0
0
0
0

.

Exercise 5.2.2 Let {x, y, z, w} be an indepen-
dent set in Rn. Which of the following sets is inde-
pendent? Support your answer.

a. {x−y, y−z, z−x}

b. {x+y, y+z, z+x}

c. {x−y, y−z, z−w, w−x}

d. {x+y, y+z, z+w, w+x}

b. Yes. If r(x+y)+ s(y+z)+ t(z+x) = 0, then
(r+t)x+(r+s)y+(s+t)z= 0. Since {x, y, z}
is independent, this implies that r + t = 0,
r+ s = 0, and s+ t = 0. The only solution is
r = s = t = 0.

d. No. In fact, (x+y)− (y+z)+(z+w)− (w+
x) = 0.

Exercise 5.2.3 Find a basis and calculate the di-
mension of the following subspaces of R4.

a. span{(1, −1, 2, 0), (2, 3, 0, 3), (1, 9, −6, 6)}

b. span{(2, 1, 0, −1), (−1, 1, 1, 1), (2, 7, 4, 1)}

c. span{(−1, 2, 1, 0), (2, 0, 3, −1), (4, 4, 11, −3),
(3, −2, 2, −1)}

d. span{(−2, 0, 3, 1), (1, 2, −1, 0), (−2, 8, 5, 3),
(−1, 2, 2, 1)}

b.




2
1
0

−1

 ,


−1

1
1
1


; dimension 2.

d.




−2
0
3
1

 ,


1
2

−1
0


; dimension 2.

Exercise 5.2.4 Find a basis and calculate the di-
mension of the following subspaces of R4.

a. U =




a
a+b
a−b

b


∣∣∣∣∣∣∣∣a and b in R



b. U =




a+b
a−b

b
a


∣∣∣∣∣∣∣∣a and b in R
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c. U =




a
b

c+a
c


∣∣∣∣∣∣∣∣a, b, and c in R



d. U =




a−b
b+ c

a
b+ c


∣∣∣∣∣∣∣∣a, b, and c in R



e. U =




a
b
c
d


∣∣∣∣∣∣∣∣a+b− c+d = 0 in R



f. U =




a
b
c
d


∣∣∣∣∣∣∣∣a+b = c+d in R



b.




1
1
0
1

 ,


1

−1
1
0


; dimension 2.

d.




1
0
1
0

 ,


−1

1
0
1

 ,


0
1
0
1


; dimension 3.

f.




−1
1
0
0

 ,


1
0
1
0

 ,


1
0
0
1


; dimension 3.

Exercise 5.2.5 Suppose that {x, y, z, w} is a
basis of R4. Show that:

a. {x+aw, y, z, w} is also a basis of R4 for any
choice of the scalar a.

b. {x+w, y+w, z+w, w} is also a basis of R4.

c. {x, x+y, x+y+ z, x+y+ z+w} is also a
basis of R4.

b. If r(x+w) + s(y+w) + t(z+w) + u(w) = 0,
then rx+sy+tz+(r+s+t+u)w= 0, so r = 0,
s = 0, t = 0, and r + s+ t + u = 0. The only
solution is r = s = t = u = 0, so the set is inde-
pendent. Since dim R4 = 4, the set is a basis
by Theorem 5.2.7.

Exercise 5.2.6 Use Theorem 5.2.3 to determine if
the following sets of vectors are a basis of the indi-
cated space.

a. {(3, −1), (2, 2)} in R2

b. {(1, 1, −1), (1, −1, 1), (0, 0, 1)} in R3

c. {(−1, 1, −1), (1, −1, 2), (0, 0, 1)} in R3

d. {(5, 2, −1), (1, 0, 1), (3, −1, 0)} in R3

e. {(2, 1, −1, 3), (1, 1, 0, 2), (0, 1, 0, −3),
(−1, 2, 3, 1)} in R4

f. {(1, 0, −2, 5), (4, 4, −3, 2), (0, 1, 0, −3),
(1, 3, 3, −10)} in R4

b. Yes

d. Yes

f. No.

Exercise 5.2.7 In each case show that the state-
ment is true or give an example showing that it is
false.

a. If {x, y} is independent, then {x, y, x+y}
is independent.

b. If {x, y, z} is independent, then {y, z} is
independent.

c. If {y, z} is dependent, then {x, y, z} is de-
pendent for any x.

d. If all of x1, x2, . . . , xk are nonzero, then
{x1, x2, . . . , xk} is independent.

e. If one of x1, x2, . . . , xk is zero, then
{x1, x2, . . . , xk} is dependent.

f. If ax+by+cz = 0, then {x, y, z} is indepen-
dent.
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g. If {x, y, z} is independent, then ax+ by+
cz = 0 for some a, b, and c in R.

h. If {x1, x2, . . . , xk} is dependent, then t1x1 +
t2x2 + · · ·+ tkxk = 0 for some numbers ti in R
not all zero.

i. If {x1, x2, . . . , xk} is independent, then t1x1+
t2x2 + · · ·+ tkxk = 0 for some ti in R.

j. Every non-empty subset of a linearly indepen-
dent set is again linearly independent.

k. Every set containing a spanning set is again a
spanning set.

b. T. If ry + sz = 0, then 0x + ry + sz = 0 so
r = s = 0 because {x, y, z} is independent.

d. F. If x 6= 0, take k = 2, x1 = x and x2 =−x.

f. F. If y =−x and z = 0, then 1x+1y+1z = 0.

h. T. This is a nontrivial, vanishing linear com-
bination, so the xi cannot be independent.

Exercise 5.2.8 If A is an n×n matrix, show that
det A = 0 if and only if some column of A is a linear
combination of the other columns.

Exercise 5.2.9 Let {x, y, z} be a linearly indepen-
dent set in R4. Show that {x, y, z, ek} is a basis of
R4 for some ek in the standard basis {e1, e2, e3, e4}.

Exercise 5.2.10 If {x1, x2, x3, x4, x5, x6}
is an independent set of vectors, show that
the subset {x2, x3, x5} is also independent.

If rx2 + sx3 + tx5 = 0 then 0x1 + rx2 + sx3 + 0x4 +
tx5 +0x6 = 0 so r = s = t = 0.

Exercise 5.2.11 Let A be any m× n matrix, and
let b1, b2, b3, . . . , bk be columns in Rm such that
the system Ax = bi has a solution xi for each i. If
{b1, b2, b3, . . . , bk} is independent in Rm, show that
{x1, x2, x3, . . . , xk} is independent in Rn.

Exercise 5.2.12 If {x1, x2, x3, . . . , xk}
is independent, show {x1, x1 + x2, x1 + x2 +
x3, . . . , x1 + x2 + · · · + xk} is also independent.

If t1x1 + t2(x1 +x2)+ · · ·+ tk(x1 +x2 + · · ·+xk) = 0,
then (t1+t2+ · · ·+tk)x1+(t2+ · · ·+tk)x2+ · · ·+(tk−1+
tk)xk−1 + (tk)xk = 0. Hence all these coefficients
are zero, so we obtain successively tk = 0, tk−1 =
0, . . . , t2 = 0, t1 = 0.

Exercise 5.2.13 If {y, x1, x2, x3, . . . , xk} is inde-
pendent, show that {y+x1, y+x2, y+x3, . . . , y+
xk} is also independent.

Exercise 5.2.14 If {x1, x2, . . . , xk} is independent
in Rn, and if y is not in span{x1, x2, . . . , xk}, show
that {x1, x2, . . . , xk, y} is independent.

Exercise 5.2.15 If A and B are matrices and
the columns of AB are independent, show that the
columns of B are independent.

Exercise 5.2.16 Suppose that {x, y} is a basis of

R2, and let A =

[
a b
c d

]
.

a. If A is invertible, show that {ax+by, cx+dy}
is a basis of R2.

b. If {ax+ by, cx+ dy} is a basis of R2, show
that A is invertible.

b. We show AT is invertible (then A is invert-
ible). Let AT x = 0 where x = [s t]T . This
means as+ ct = 0 and bs+ dt = 0, so s(ax+
by)+ t(cx+ dy) = (sa+ tc)x+(sb+ td)y = 0.
Hence s = t = 0 by hypothesis.

Exercise 5.2.17 Let A denote an m×n matrix.

a. Show that null A = null (UA) for every invert-
ible m×m matrix U .

b. Show that dim (null A) = dim (null (AV )) for
every invertible n × n matrix V . [Hint: If
{x1, x2, . . . , xk} is a basis of null A, show
that {V−1x1, V−1x2, . . . , V−1xk} is a basis of
null (AV ).]

b. Each V−1xi is in null (AV ) because
AV (V−1xi) = Axi = 0. The set
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{V−1x1, . . . , V−1xk} is independent as V−1

is invertible. If y is in null (AV ), then Vy is in
null (A) so let Vy = t1x1+ · · ·+ tkxk where each
tk is in R. Thus y = t1V−1x1 + · · ·+ tkV−1xk is
in span{V−1x1, . . . , V−1xk}.

Exercise 5.2.18 Let A denote an m×n matrix.

a. Show that im A = im (AV ) for every invertible
n×n matrix V .

b. Show that dim ( im A) = dim ( im (UA)) for ev-
ery invertible m × m matrix U . [Hint: If
{y1, y2, . . . , yk} is a basis of im (UA), show

that {U−1y1, U−1y2, . . . , U−1yk} is a basis of
im A.]

Exercise 5.2.19 Let U and W denote subspaces of
Rn, and assume that U ⊆W . If dim U = n−1, show
that either W =U or W = Rn.

Exercise 5.2.20 Let U and W denote subspaces of
Rn, and assume that U ⊆W . If dim W = 1, show that
either U = {0} or U =W .
We have {0} ⊆ U ⊆ W where dim{0} = 0 and
dim W = 1. Hence dim U = 0 or dim U = 1 by The-
orem 5.2.8, that is U = 0 or U =W , again by Theo-
rem 5.2.8.
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5.3 Orthogonality

Length and orthogonality are basic concepts in geometry and, in R2 and R3, they both can be
defined using the dot product. In this section we extend the dot product to vectors in Rn, and so
endow Rn with euclidean geometry. We then introduce the idea of an orthogonal basis—one of the
most useful concepts in linear algebra, and begin exploring some of its applications.

Dot Product, Length, and Distance

If x= (x1, x2, . . . , xn) and y= (y1, y2, . . . , yn) are two n-tuples in Rn, recall that their dot product
was defined in Section 2.2 as follows:

x ·y = x1y1 + x2y2 + · · ·+ xnyn

Observe that if x and y are written as columns then x ·y= xT y is a matrix product (and x ·y= xyT

if they are written as rows). Here x ·y is a 1×1 matrix, which we take to be a number.

Definition 5.6 Length in Rn

As in R3, the length ‖x‖ of the vector is defined by

‖x‖=
√

x ·x =
√

x2
1 + x2

2 + · · ·+ x2
n

Where
√

( ) indicates the positive square root.

A vector x of length 1 is called a unit vector. If x 6= 0, then ‖x‖ 6= 0 and it follows easily that
1

‖x‖x is a unit vector (see Theorem 5.3.6 below), a fact that we shall use later.

Example 5.3.1

If x = (1, −1, −3, 1) and y = (2, 1, 1, 0) in R4, then x ·y = 2−1−3+0 =−2 and
‖x‖=

√
1+1+9+1 =

√
12 = 2

√
3. Hence 1

2
√

3
x is a unit vector; similarly 1√

6
y is a unit

vector.

These definitions agree with those in R2 and R3, and many properties carry over to Rn:

Theorem 5.3.1
Let x, y, and z denote vectors in Rn. Then:

1. x ·y = y ·x.

2. x · (y+z) = x ·y+x ·z.

3. (ax) ·y = a(x ·y) = x · (ay) for all scalars a.
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4. ‖x‖2 = x ·x.

5. ‖x‖ ≥ 0, and ‖x‖= 0 if and only if x = 0.

6. ‖ax‖= |a|‖x‖ for all scalars a.

Proof. (1), (2), and (3) follow from matrix arithmetic because x ·y = xT y; (4) is clear from the
definition; and (6) is a routine verification since |a| =

√
a2. If x = (x1, x2, . . . , xn), then ‖x‖ =√

x2
1 + x2

2 + · · ·+ x2
n so ‖x‖= 0 if and only if x2

1+x2
2+ · · ·+x2

n = 0. Since each xi is a real number this
happens if and only if xi = 0 for each i; that is, if and only if x = 0. This proves (5).

Because of Theorem 5.3.1, computations with dot products in Rn are similar to those in R3. In
particular, the dot product

(x1 +x2 + · · ·+xm) · (y1 +y2 + · · ·+yk)

equals the sum of mk terms, xi ·y j, one for each choice of i and j. For example:

(3x−4y) · (7x+2y) = 21(x ·x)+6(x ·y)−28(y ·x)−8(y ·y)
= 21‖x‖2 −22(x ·y)−8‖y‖2

holds for all vectors x and y.

Example 5.3.2

Show that ‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 for any x and y in Rn.

Solution. Using Theorem 5.3.1 several times:

‖x+y‖2 = (x+y) · (x+y) = x ·x+x ·y+y ·x+y ·y
= ‖x‖2 +2(x ·y)+‖y‖2

Example 5.3.3

Suppose that Rn = span{f1, f2, . . . , fk} for some vectors fi. If x · fi = 0 for each i where x is
in Rn, show that x = 0.

Solution. We show x = 0 by showing that ‖x‖= 0 and using (5) of Theorem 5.3.1. Since
the fi span Rn, write x = t1f1 + t2f2 + · · ·+ tkfk where the ti are in R. Then

‖x‖2 = x ·x = x · (t1f1 + t2f2 + · · ·+ tkfk)

= t1(x · f1)+ t2(x · f2)+ · · ·+ tk(x · fk)

= t1(0)+ t2(0)+ · · ·+ tk(0)
= 0
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We saw in Section 4.2 that if u and v are nonzero vectors in R3, then u·v
‖u‖‖v‖ = cosθ where θ is the

angle between u and v. Since |cosθ | ≤ 1 for any angle θ , this shows that |u ·v| ≤ ‖u‖‖v‖. In this
form the result holds in Rn.

Theorem 5.3.2: Cauchy Inequality9

If x and y are vectors in Rn, then

|x ·y| ≤ ‖x‖‖y‖

Moreover |x ·y|= ‖x‖‖y‖ if and only if one of x and y is a multiple of the other.

Proof. The inequality holds if x = 0 or y = 0 (in fact it is equality). Otherwise, write ‖x‖= a > 0
and ‖y‖= b > 0 for convenience. A computation like that preceding Example 5.3.2 gives

‖bx−ay‖2 = 2ab(ab−x ·y) and ‖bx+ay‖2 = 2ab(ab+x ·y) (5.1)

It follows that ab−x ·y ≥ 0 and ab+x ·y ≥ 0, and hence that −ab ≤ x ·y ≤ ab. Hence |x ·y| ≤
ab = ‖x‖‖y‖, proving the Cauchy inequality.

If equality holds, then |x ·y|= ab, so x ·y = ab or x ·y =−ab. Hence Equation 5.1 shows that
bx− ay = 0 or bx+ ay = 0, so one of x and y is a multiple of the other (even if a = 0 or b = 0).

The Cauchy inequality is equivalent to (x ·y)2 ≤ ‖x‖2‖y‖2. In R5 this becomes

(x1y1 + x2y2 + x3y3 + x4y4 + x5y5)
2 ≤ (x2

1 + x2
2 + x2

3 + x2
4 + x2

5)(y
2
1 + y2

2 + y2
3 + y2

4 + y2
5)

for all xi and yi in R.
There is an important consequence of the Cauchy inequality. Given x and y in Rn, use Exam-

ple 5.3.2 and the fact that x ·y ≤ ‖x‖‖y‖ to compute

‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 ≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x+y‖)2

Taking positive square roots gives:

Corollary 5.3.1: Triangle Inequality

If x and y are vectors in Rn, then ‖x+y‖ ≤ ‖x‖+‖y‖.

9Augustin Louis Cauchy (1789–1857) was born in Paris and became a professor at the École Polytechnique at the
age of 26. He was one of the great mathematicians, producing more than 700 papers, and is best remembered for his
work in analysis in which he established new standards of rigour and founded the theory of functions of a complex
variable. He was a devout Catholic with a long-term interest in charitable work, and he was a royalist, following
King Charles X into exile in Prague after he was deposed in 1830. Theorem 5.3.2 first appeared in his 1812 memoir
on determinants.
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v w

v+w

The reason for the name comes from the observation that in R3 the
inequality asserts that the sum of the lengths of two sides of a triangle
is not less than the length of the third side. This is illustrated in the
diagram.

Definition 5.7 Distance in Rn

If x and y are two vectors in Rn, we define the distance d(x, y) between x and y by

d(x, y) = ‖x−y‖

w
v−w

v

The motivation again comes from R3 as is clear in the diagram.
This distance function has all the intuitive properties of distance in
R3, including another version of the triangle inequality.

Theorem 5.3.3
If x, y, and z are three vectors in Rn we have:

1. d(x, y)≥ 0 for all x and y.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) for all x and y .

4. d(x, z)≤ d(x, y)+d(y, z)for all x, y, and z. Triangle inequality.

Proof. (1) and (2) restate part (5) of Theorem 5.3.1 because d(x, y) = ‖x−y‖, and (3) follows
because ‖u‖= ‖−u‖ for every vector u in Rn. To prove (4) use the Corollary to Theorem 5.3.2:

d(x, z) = ‖x−z‖= ‖(x−y)+(y−z)‖
≤ ‖(x−y)‖+‖(y−z)‖= d(x, y)+d(y, z)

Orthogonal Sets and the Expansion Theorem

Definition 5.8 Orthogonal and Orthonormal Sets

We say that two vectors x and y in Rn are orthogonal if x ·y = 0, extending the
terminology in R3 (See Theorem 4.2.3). More generally, a set {x1, x2, . . . , xk} of vectors in
Rn is called an orthogonal set if

xi ·x j = 0 for all i 6= j and xi 6= 0 for all i10

Note that {x} is an orthogonal set if x 6= 0. A set {x1, x2, . . . , xk} of vectors in Rn is called
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orthonormal if it is orthogonal and, in addition, each xi is a unit vector:

‖xi‖= 1 for each i.

Example 5.3.4

The standard basis {e1, e2, . . . , en} is an orthonormal set in Rn.

The routine verification is left to the reader, as is the proof of:

Example 5.3.5

If {x1, x2, . . . , xk} is orthogonal, so also is {a1x1, a2x2, . . . , akxk} for any nonzero scalars
ai.

If x 6= 0, it follows from item (6) of Theorem 5.3.1 that 1
‖x‖x is a unit vector, that is it has

length 1.

Definition 5.9 Normalizing an Orthogonal Set

Hence if {x1, x2, . . . , xk} is an orthogonal set, then { 1
‖x1‖x1, 1

‖x2‖x2, · · · , 1
‖xk‖xk} is an

orthonormal set, and we say that it is the result of normalizing the orthogonal set
{x1, x2, · · · , xk}.

Example 5.3.6

If f1 =


1
1
1

−1

, f2 =


1
0
1
2

, f3 =


−1

0
1
0

, and f4 =


−1

3
−1

1

 then {f1, f2, f3, f4} is an

orthogonal set in R4 as is easily verified. After normalizing, the corresponding orthonormal
set is {1

2f1, 1√
6
f2, 1√

2
f3, 1

2
√

3
f4}

v+w

v

w The most important result about orthogonality is Pythagoras’ theo-
rem. Given orthogonal vectors v and w in R3, it asserts that

‖v+w‖2 = ‖v‖2 +‖w‖2

as in the diagram. In this form the result holds for any orthogonal set
in Rn.

10The reason for insisting that orthogonal sets consist of nonzero vectors is that we will be primarily concerned
with orthogonal bases.
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Theorem 5.3.4: Pythagoras’ Theorem

If {x1, x2, . . . , xk} is an orthogonal set in Rn, then

‖x1 +x2 + · · ·+xk‖2 = ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2.

Proof. The fact that xi ·x j = 0 whenever i 6= j gives
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‖x1 +x2 + · · ·+xk‖2 = (x1 +x2 + · · ·+xk) · (x1 +x2 + · · ·+xk)

= (x1 ·x1 +x2 ·x2 + · · ·+xk ·xk)+∑
i6= j

xi ·x j

= ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2 +0

This is what we wanted.

If v and w are orthogonal, nonzero vectors in R3, then they are certainly not parallel, and so
are linearly independent Example 5.2.7. The next theorem gives a far-reaching extension of this
observation.

Theorem 5.3.5
Every orthogonal set in Rn is linearly independent.

Proof. Let {x1, x2, . . . , xk} be an orthogonal set in Rn and suppose a linear combination vanishes,
say: t1x1 + t2x2 + · · ·+ tkxk = 0. Then

0 = x1 ·0 = x1 · (t1x1 + t2x2 + · · ·+ tkxk)

= t1(x1 ·x1)+ t2(x1 ·x2)+ · · ·+ tk(x1 ·xk)

= t1‖x1‖2 + t2(0)+ · · ·+ tk(0)

= t1‖x1‖2

Since ‖x1‖2 6= 0, this implies that t1 = 0. Similarly ti = 0 for each i.

Theorem 5.3.5 suggests considering orthogonal bases for Rn, that is orthogonal sets that span
Rn. These turn out to be the best bases in the sense that, when expanding a vector as a linear
combination of the basis vectors, there are explicit formulas for the coefficients.

Theorem 5.3.6: Expansion Theorem

Let {f1, f2, . . . , fm} be an orthogonal basis of a subspace U of Rn. If x is any vector in U ,
we have

x =
(

x·f1
‖f1‖2

)
f1 +

(
x·f2
‖f2‖2

)
f1 + · · ·+

(
x·fm
‖fm‖2

)
fm

Proof. Since {f1, f2, . . . , fm} spans U , we have x = t1f1 + t2f2 + · · ·+ tmfm where the ti are scalars.
To find t1 we take the dot product of both sides with f1:

x · f1 = (t1f1 + t2f2 + · · ·+ tmfm) · f1

= t1(f1 · f1)+ t2(f2 · f1)+ · · ·+ tm(fm · f1)

= t1‖f1‖2 + t2(0)+ · · ·+ tm(0)

= t1‖f1‖2
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Since f1 6= 0, this gives t1 =
x·f1
‖f1‖2 . Similarly, ti = x·fi

‖fi‖2 for each i.

The expansion in Theorem 5.3.6 of x as a linear combination of the orthogonal basis {f1, f2, . . . , fm}
is called the Fourier expansion of x, and the coefficients t1 = x·fi

‖fi‖2 are called the Fourier coeffi-
cients. Note that if {f1, f2, . . . , fm} is actually orthonormal, then ti = x · fi for each i. We will have
a great deal more to say about this in Section ??.

Example 5.3.7

Expand x = (a, b, c, d) as a linear combination of the orthogonal basis {f1, f2, f3, f4} of R4

given in Example 5.3.6.

Solution. We have f1 = (1, 1, 1, −1), f2 = (1, 0, 1, 2), f3 = (−1, 0, 1, 0), and
f4 = (−1, 3, −1, 1) so the Fourier coefficients are

t1 =
x·f1
‖f1‖2 =

1
4(a+b+ c+d) t3 =

x·f3
‖f3‖2 =

1
2(−a+ c)

t2 =
x·f2
‖f2‖2 =

1
6(a+ c+2d) t4 =

x·f4
‖f4‖2 =

1
12(−a+3b− c+d)

The reader can verify that indeed x = t1f1 + t2f2 + t3f3 + t4f4.

A natural question arises here: Does every subspace U of Rn have an orthogonal basis? The
answer is “yes”; in fact, there is a systematic procedure, called the Gram-Schmidt algorithm, for
turning any basis of U into an orthogonal one. This leads to a definition of the projection onto a
subspace U that generalizes the projection along a vector used in R2 and R3. All this is discussed
in Section 8.1.

Exercises for 5.3

We often write vectors in Rn as row n-tuples.
Exercise 5.3.1 Obtain orthonormal bases of R3 by
normalizing the following.

a. {(1, −1, 2), (0, 2, 1), (5, 1, −2)}

b. {(1, 1, 1), (4, 1, −5), (2, −3, 1)}

b. 1√
3

 1
1
1

 , 1√
42

 4
1

−5

 , 1√
14

 2
−3

1

.

Exercise 5.3.2 In each case, show that the set of
vectors is orthogonal in R4.

a. {(1, −1, 2, 5), (4, 1, 1, −1), (−7, 28, 5, 5)}

b. {(2, −1, 4, 5), (0, −1, 1, −1), (0, 3, 2, −1)}

Exercise 5.3.3 In each case, show that B is an
orthogonal basis of R3 and use Theorem 5.3.6 to ex-
pand x = (a, b, c) as a linear combination of the
basis vectors.

a. B = {(1, −1, 3), (−2, 1, 1), (4, 7, 1)}

b. B = {(1, 0, −1), (1, 4, 1), (2, −1, 2)}

c. B = {(1, 2, 3), (−1, −1, 1), (5, −4, 1)}
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d. B = {(1, 1, 1), (1, −1, 0), (1, 1, −2)}

b.

 a
b
c

 = 1
2(a − c)

 1
0

−1

 + 1
18(a + 4b +

c)

 1
4
1

+ 1
9(2a−b+2c)

 2
−1

2

.

d.

 a
b
c

 = 1
3(a + b + c)

 1
1
1

 + 1
2(a −

b)

 1
−1

0

+ 1
6(a+b−2c)

 1
1

−2

.

Exercise 5.3.4 In each case, write x as a linear
combination of the orthogonal basis of the subspace
U .

a. x=(13, −20, 15); U = span{(1, −2, 3), (−1, 1, 1)}

b. x = (14, 1, −8, 5);
U = span{(2, −1, 0, 3), (2, 1, −2, −1)}

b.


14
1

−8
5

= 3


2

−1
0
3

+4


2
1

−2
−1

.

Exercise 5.3.5 In each case, find all (a, b, c, d)
in R4 such that the given set is orthogonal.

a. {(1, 2, 1, 0), (1, −1, 1, 3), (2, −1, 0, −1),
(a, b, c, d)}

b. {(1, 0, −1, 1), (2, 1, 1, −1), (1, −3, 1, 0),
(a, b, c, d)}

b. t


−1

3
10
11

, in R

Exercise 5.3.6 If ‖x‖= 3, ‖y‖= 1, and x ·y =−2,
compute:

‖3x−5y‖a) ‖2x+7y‖b)
(3x−y) · (2y−x)c) (x−2y) · (3x+5y)d)

b.
√

29

d. 19

Exercise 5.3.7 In each case either show that the
statement is true or give an example showing that it
is false.

a. Every independent set in Rn is orthogonal.

b. If {x, y} is an orthogonal set in Rn, then
{x, x+y} is also orthogonal.

c. If {x, y} and {z, w} are both orthogonal in
Rn, then {x, y, z, w} is also orthogonal.

d. If {x1, x2} and {y1, y2, y3} are both or-
thogonal and xi ·y j = 0 for all i and j, then
{x1, x2, y1, y2, y3} is orthogonal.

e. If {x1, x2, . . . , xn} is orthogonal in Rn, then
Rn = span{x1, x2, . . . , xn}.

f. If x 6= 0 in Rn, then {x} is an orthogonal set.

b. F. x =

[
1
0

]
and y =

[
0
1

]
.

d. T. Every xi · y j = 0 by assumption, every
xi ·x j = 0 if i 6= j because the xi are orthogo-
nal, and every yi ·y j = 0 if i 6= j because the yi
are orthogonal. As all the vectors are nonzero,
this does it.

f. T. Every pair of distinct vectors in the set {x}
has dot product zero (there are no such pairs).

Exercise 5.3.8 Let v denote a nonzero vector in
Rn.
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a. Show that P = {x in Rn | x ·v = 0} is a sub-
space of Rn.

b. Show that Rv = {tv | t in R} is a subspace of
Rn.

c. Describe P and Rv geometrically when n = 3.

Exercise 5.3.9 If A is an m× n matrix with or-
thonormal columns, show that AT A = In. [Hint: If
c1, c2, . . . , cn are the columns of A, show that col-
umn j of AT A has entries c1 ·c j, c2 ·c j, . . . , cn ·c j].

Let c1, . . . , cn be the columns of A. Then row i of AT

is cT
i , so the (i, j)-entry of AT A is cT

i c j = ci ·c j = 0, 1
according as i 6= j, i = j. So AT A = I.

Exercise 5.3.10 Use the Cauchy inequality to
show that √xy≤ 1

2(x+y) for all x≥ 0 and y≥ 0. Here√
xy and 1

2(x+y) are called, respectively, the geomet-
ric mean and arithmetic mean of x and y. [Hint: Use

x =

[ √
x√
y

]
and y =

[ √
y√
x

]
.]

Exercise 5.3.11 Use the Cauchy inequality to
prove that:

a. r1 + r2 + · · ·+ rn ≤ n(r2
1 + r2

2 + · · ·+ r2
n) for all ri

in R and all n ≥ 1.

b. r1r2+r1r3+r2r3 ≤ r2
1+r2

2+r2
3 for all r1, r2, and

r3 in R. [Hint: See part (a).]

b. Take n = 3 in (a), expand, and simplify.

Exercise 5.3.12

a. Show that x and y are orthogonal in Rn if and
only if ‖x+y‖= ‖x−y‖.

b. Show that x+y and x−y are orthogonal in
Rn if and only if ‖x‖= ‖y‖.

b. We have (x+y) ·(x−y) = ‖x‖2−‖y‖2. Hence
(x+y) · (x−y) = 0 if and only if ‖x‖2 = ‖y‖2;
if and only if ‖x‖ = ‖y‖—where we used the
fact that ‖x‖ ≥ 0 and ‖y‖ ≥ 0.

Exercise 5.3.13

a. Show that ‖x+y‖2 = ‖x‖2 +‖y‖2 if and only
if x is orthogonal to y.

b. If x =

[
1
1

]
, y =

[
1
0

]
and z =

[
−2

3

]
, show

that ‖x+y+z‖2 = ‖x‖2 +‖y‖2 +‖z‖2 but
x ·y 6= 0, x ·z 6= 0, and y ·z 6= 0.

Exercise 5.3.14

a. Show that x ·y = 1
4 [‖x+y‖2−‖x−y‖2] for all

x, y in Rn.

b. Show that ‖x‖2+‖y‖2 = 1
2

[
‖x+y‖2 +‖x−y‖2

]
for all x, y in Rn.

Exercise 5.3.15 If A is n × n, show that ev-
ery eigenvalue of AT A is nonnegative. [Hint:
Compute ‖Ax‖2 where x is an eigenvector.]

If AT Ax = λx, then ‖Ax‖2 = (Ax) · (Ax) = xT AT Ax =
xT (λx) = λ‖x‖2.

Exercise 5.3.16 If Rn = span{x1, . . . , xm} and
x ·xi = 0 for all i, show that x = 0. [Hint: Show
‖x‖= 0.]

Exercise 5.3.17 If Rn = span{x1, . . . , xm} and
x ·xi = y ·xi for all i, show that x = y. [Hint: Exer-
cise 5.3.16]

Exercise 5.3.18 Let {e1, . . . , en} be an orthogonal
basis of Rn. Given x and y in Rn, show that

x ·y = (x·e1)(y·e1)
‖e1‖2 + · · ·+ (x·en)(y·en)

‖en‖2
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5.4 Rank of a Matrix

In this section we use the concept of dimension to clarify the definition of the rank of a matrix given
in Section 1.2, and to study its properties. This requires that we deal with rows and columns in the
same way. While it has been our custom to write the n-tuples in Rn as columns, in this section we
will frequently write them as rows. Subspaces, independence, spanning, and dimension are defined
for rows using matrix operations, just as for columns. If A is an m×n matrix, we define:

Definition 5.10 Column and Row Space of a Matrix

The column space, col A, of A is the subspace of Rm spanned by the columns of A.
The row space, row A, of A is the subspace of Rn spanned by the rows of A.

Much of what we do in this section involves these subspaces. We begin with:

Lemma 5.4.1
Let A and B denote m×n matrices.

1. If A → B by elementary row operations, then row A = row B.

2. If A → B by elementary column operations, then col A = col B.

Proof. We prove (1); the proof of (2) is analogous. It is enough to do it in the case when A → B
by a single row operation. Let R1, R2, . . . , Rm denote the rows of A. The row operation A → B
either interchanges two rows, multiplies a row by a nonzero constant, or adds a multiple of a row
to a different row. We leave the first two cases to the reader. In the last case, suppose that a times
row p is added to row q where p < q. Then the rows of B are R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm,
and Theorem 5.1.1 shows that

span{R1, . . . , Rp, . . . , Rq, . . . , Rm}= span{R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm}

That is, row A = row B.

If A is any matrix, we can carry A → R by elementary row operations where R is a row-echelon
matrix. Hence row A = row R by Lemma 5.4.1; so the first part of the following result is of interest.

Lemma 5.4.2
If R is a row-echelon matrix, then

1. The nonzero rows of R are a basis of row R.

2. The columns of R containing leading ones are a basis of col R.

Proof. The rows of R are independent by Example 5.2.6, and they span row R by definition. This
proves (1).
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Let c j1 , c j2 , . . . , c jr denote the columns of R containing leading 1s. Then {c j1 , c j2 , . . . , c jr}
is independent because the leading 1s are in different rows (and have zeros below and to the left
of them). Let U denote the subspace of all columns in Rm in which the last m− r entries are zero.
Then dim U = r (it is just Rr with extra zeros). Hence the independent set {c j1 , c j2 , . . . , c jr} is a
basis of U by Theorem 5.2.7. Since each c ji is in col R, it follows that col R =U , proving (2).

With Lemma 5.4.2 we can fill a gap in the definition of the rank of a matrix given in Chapter 1.
Let A be any matrix and suppose A is carried to some row-echelon matrix R by row operations.
Note that R is not unique. In Section 1.2 we defined the rank of A, denoted rank A, to be the
number of leading 1s in R, that is the number of nonzero rows of R. The fact that this number does
not depend on the choice of R was not proved in Section 1.2. However part 1 of Lemma 5.4.2 shows
that

rank A = dim ( row A)

and hence that rank A is independent of R.
Lemma 5.4.2 can be used to find bases of subspaces of Rn (written as rows). Here is an example.

Example 5.4.1

Find a basis of U = span{(1, 1, 2, 3), (2, 4, 1, 0), (1, 5, −4, −9)}.

Solution. U is the row space of

 1 1 2 3
2 4 1 0
1 5 −4 −9

. This matrix has row-echelon form 1 1 2 3
0 1 −3

2 −3
0 0 0 0

, so {(1, 1, 2, 3), (0, 1, −3
2 , −3)} is basis of U by Lemma 5.4.2.

Note that {(1, 1, 2, 3), (0, 2, −3, −6)} is another basis that avoids fractions.

Lemmas 5.4.1 and 5.4.2 are enough to prove the following fundamental theorem.

Theorem 5.4.1: Rank Theorem
Let A denote any m×n matrix of rank r. Then

dim (col A) = dim ( row A) = r

Moreover, if A is carried to a row-echelon matrix R by row operations, then

1. The r nonzero rows of R are a basis of row A.

2. If the leading 1s lie in columns j1, j2, . . . , jr of R, then columns j1, j2, . . . , jr of A are
a basis of col A.

Proof. We have row A = row R by Lemma 5.4.1, so (1) follows from Lemma 5.4.2. Moreover,
R = UA for some invertible matrix U by Theorem 2.5.1. Now write A =

[
c1 c2 . . . cn

]
where

c1, c2, . . . , cn are the columns of A. Then

R =UA =U
[

c1 c2 · · · cn
]
=
[

Uc1 Uc2 · · · Ucn
]
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Thus, in the notation of (2), the set B = {Uc j1 , Uc j2 , . . . , Uc jr} is a basis of col R by Lemma 5.4.2.
So, to prove (2) and the fact that dim (col A) = r, it is enough to show that D = {c j1 , c j2 , . . . , c jr}
is a basis of col A. First, D is linearly independent because U is invertible (verify), so we show that,
for each j, column c j is a linear combination of the c ji . But Uc j is column j of R, and so is a linear
combination of the Uc ji , say Uc j = a1Uc j1 +a2Uc j2 + · · ·+arUc jr where each ai is a real number.

Since U is invertible, it follows that c j = a1c j1 + a2c j2 + · · ·+ arc jr and the proof is complete.

Example 5.4.2

Compute the rank of A =

 1 2 2 −1
3 6 5 0
1 2 1 2

 and find bases for row A and col A.

Solution. The reduction of A to row-echelon form is as follows: 1 2 2 −1
3 6 5 0
1 2 1 2

→

 1 2 2 −1
0 0 −1 3
0 0 −1 3

→

 1 2 2 −1
0 0 −1 3
0 0 0 0


Hence rank A = 2, and {

[
1 2 2 −1

]
,
[

0 0 1 −3
]
} is a basis of row A by

Lemma 5.4.2. Since the leading 1s are in columns 1 and 3 of the row-echelon matrix,

Theorem 5.4.1 shows that columns 1 and 3 of A are a basis


 1

3
1

 ,

 2
5
1

 of col A.

Theorem 5.4.1 has several important consequences. The first, Corollary 5.4.1 below, follows
because the rows of A are independent (respectively span row A) if and only if their transposes are
independent (respectively span col A).

Corollary 5.4.1

If A is any matrix, then rank A = rank (AT ).

If A is an m×n matrix, we have col A ⊆ Rm and row A ⊆ Rn. Hence Theorem 5.2.8 shows that
dim (col A)≤ dim (Rm) = m and dim ( row A)≤ dim (Rn) = n. Thus Theorem 5.4.1 gives:

Corollary 5.4.2

If A is an m×n matrix, then rank A ≤ m and rank A ≤ n.

Corollary 5.4.3

rank A = rank (UA) = rank (AV ) whenever U and V are invertible.



300 Vector Space Rn

Proof. Lemma 5.4.1 gives rank A = rank (UA). Using this and Corollary 5.4.1 we get

rank (AV ) = rank (AV )T = rank (V T AT ) = rank (AT ) = rank A

The next corollary requires a preliminary lemma.

Lemma 5.4.3
Let A, U , and V be matrices of sizes m×n, p×m, and n×q respectively.

1. col (AV )⊆ col A, with equality if VV ′ = In for some V ′.

2. row (UA)⊆ row A, with equality if U ′U = Im for some U ′.

Proof. For (1), write V =
[
v1, v2, . . . , vq

]
where v j is column j of V . Then we have

AV =
[
Av1, Av2, . . . , Avq

]
, and each Av j is in col A by Definition 2.4. It follows that col (AV ) ⊆

col A. If VV ′ = In, we obtain col A = col [(AV )V ′]⊆ col (AV ) in the same way. This proves (1).
As to (2), we have col

[
(UA)T ]= col (ATUT )⊆ col (AT ) by (1), from which row (UA)⊆ row A.

If U ′U = Im, this is equality as in the proof of (1).

Corollary 5.4.4

If A is m×n and B is n×m, then rank AB ≤ rank A and rank AB ≤ rank B.

Proof. By Lemma 5.4.3, col (AB)⊆ col A and row (BA)⊆ row A, so Theorem 5.4.1 applies.

In Section 5.1 we discussed two other subspaces associated with an m× n matrix A: the null
space null (A) and the image space im (A)

null (A) = {x in Rn | Ax = 0} and im (A) = {Ax | x in Rn}

Using rank, there are simple ways to find bases of these spaces. If A has rank r, we have im (A) =
col (A) by Example 5.1.8, so dim [ im (A)] = dim [col (A)] = r. Hence Theorem 5.4.1 provides a
method of finding a basis of im (A). This is recorded as part (2) of the following theorem.

Theorem 5.4.2
Let A denote an m×n matrix of rank r. Then

1. The n− r basic solutions to the system Ax = 0 provided by the gaussian algorithm are
a basis of null (A), so dim [null (A)] = n− r.

2. Theorem 5.4.1 provides a basis of im (A) = col (A), and dim [ im (A)] = r.

Proof. It remains to prove (1). We already know (Theorem 2.2.1) that null (A) is spanned by the
n− r basic solutions of Ax = 0. Hence using Theorem 5.2.7, it suffices to show that dim [null (A)] =
n− r. So let {x1, . . . , xk} be a basis of null (A), and extend it to a basis {x1, . . . , xk, xk+1, . . . , xn}
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of Rn (by Theorem 5.2.6). It is enough to show that {Axk+1, . . . , Axn} is a basis of im (A); then
n− k = r by the above and so k = n− r as required.

Spanning. Choose Ax in im (A), x in Rn, and write x = a1x1 + · · ·+akxk +ak+1xk+1 + · · ·+anxn
where the ai are in R. Then Ax = ak+1Axk+1 + · · ·+anAxn because {x1, . . . , xk} ⊆ null (A).

Independence. Let tk+1Axk+1+ · · ·+ tnAxn = 0, ti in R. Then tk+1xk+1+ · · ·+ tnxn is in null A, so
tk+1xk+1 + · · ·+ tnxn = t1x1 + · · ·+ tkxk for some t1, . . . , tk in R. But then the independence of the
xi shows that ti = 0 for every i.

Example 5.4.3

If A =

 1 −2 1 1
−1 2 0 1

2 −4 1 0

, find bases of null (A) and im (A), and so find their dimensions.

Solution. If x is in null (A), then Ax = 0, so x is given by solving the system Ax = 0. The
reduction of the augmented matrix to reduced form is 1 −2 1 1 0

−1 2 0 1 0
2 −4 1 0 0

→

 1 −2 0 −1 0
0 0 1 2 0
0 0 0 0 0



Hence r = rank (A) = 2. Here, im (A) = col (A) has basis


 1

−1
2

 ,

 1
0
1

 by

Theorem 5.4.1 because the leading 1s are in columns 1 and 3. In particular,
dim [ im (A)] = 2 = r as in Theorem 5.4.2.
Turning to null (A), we use gaussian elimination. The leading variables are x1 and x3, so the
nonleading variables become parameters: x2 = s and x4 = t. It follows from the reduced
matrix that x1 = 2s+ t and x3 =−2t, so the general solution is

x =


x1
x2
x3
x4

=


2s+ t

s
−2t

t

= sx1 + tx2 where x1 =


2
1
0
0

 , and x2 =


1
0

−2
1

 .

Hence null (A). But x1 and x2 are solutions (basic), so

null (A) = span{x1, x2}

However Theorem 5.4.2 asserts that {x1, x2} is a basis of null (A). (In fact it is easy to
verify directly that {x1, x2} is independent in this case.) In particular,
dim [null (A)] = 2 = n− r, as Theorem 5.4.2 asserts.

Let A be an m×n matrix. Corollary 5.4.2 of Theorem 5.4.1 asserts that rank A ≤ m and rank A ≤
n, and it is natural to ask when these extreme cases arise. If c1, c2, . . . , cn are the columns of A,
Theorem 5.2.2 shows that {c1, c2, . . . , cn} spans Rm if and only if the system Ax = b is consistent
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for every b in Rm, and that {c1, c2, . . . , cn} is independent if and only if Ax = 0, x in Rn, implies
x = 0. The next two useful theorems improve on both these results, and relate them to when the
rank of A is n or m.

Theorem 5.4.3
The following are equivalent for an m×n matrix A:

1. rank A = n.

2. The rows of A span Rn.

3. The columns of A are linearly independent in Rm.

4. The n×n matrix AT A is invertible.

5. CA = In for some n×m matrix C.

6. If Ax = 0, x in Rn, then x = 0.

Proof. (1) ⇒ (2). We have row A ⊆ Rn, and dim ( row A) = n by (1), so row A = Rn by Theo-
rem 5.2.8. This is (2).

(2) ⇒ (3). By (2), row A =Rn, so rank A = n. This means dim (col A) = n. Since the n columns
of A span col A, they are independent by Theorem 5.2.7.

(3) ⇒ (4). If (AT A)x = 0, x in Rn, we show that x = 0 (Theorem 2.4.5). We have

‖Ax‖2 = (Ax)T Ax = xT AT Ax = xT 0 = 0

Hence Ax = 0, so x = 0 by (3) and Theorem 5.2.2.
(4) ⇒ (5). Given (4), take C = (AT A)−1AT .
(5) ⇒ (6). If Ax = 0, then left multiplication by C (from (5)) gives x = 0.
(6) ⇒ (1). Given (6), the columns of A are independent by Theorem 5.2.2. Hence dim (col A)= n,

and (1) follows.

Theorem 5.4.4
The following are equivalent for an m×n matrix A:

1. rank A = m.

2. The columns of A span Rm.

3. The rows of A are linearly independent in Rn.

4. The m×m matrix AAT is invertible.

5. AC = Im for some n×m matrix C.

6. The system Ax = b is consistent for every b in Rm.
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Proof. (1) ⇒ (2). By (1), dim (col A = m, so col A = Rm by Theorem 5.2.8.
(2) ⇒ (3). By (2), col A = Rm, so rank A = m. This means dim ( row A) = m. Since the m rows

of A span row A, they are independent by Theorem 5.2.7.
(3) ⇒ (4). We have rank A = m by (3), so the n×m matrix AT has rank m. Hence applying

Theorem 5.4.3 to AT in place of A shows that (AT )T AT is invertible, proving (4).
(4) ⇒ (5). Given (4), take C = AT (AAT )

−1 in (5).
(5) ⇒ (6). Comparing columns in AC = Im gives Ac j = e j for each j, where c j and e j denote

column j of C and Im respectively. Given b in Rm, write b = ∑
m
j=1 r je j, r j in R. Then Ax = b holds

with x = ∑
m
j=1 r jc j as the reader can verify.

(6) ⇒ (1). Given (6), the columns of A span Rm by Theorem 5.2.2. Thus col A = Rm and (1)
follows.

Example 5.4.4

Show that
[

3 x+ y+ z
x+ y+ z x2 + y2 + z2

]
is invertible if x, y, and z are not all equal.

Solution. The given matrix has the form AT A where A =

 1 x
1 y
1 z

 has independent

columns because x, y, and z are not all equal (verify). Hence Theorem 5.4.3 applies.

Theorem 5.4.3 and Theorem 5.4.4 relate several important properties of an m× n matrix A to
the invertibility of the square, symmetric matrices AT A and AAT . In fact, even if the columns of
A are not independent or do not span Rm, the matrices AT A and AAT are both symmetric and, as
such, have real eigenvalues as we shall see. We return to this in Chapter 7.

Exercises for 5.4

Exercise 5.4.1 In each case find bases for the row
and column spaces of A and determine the rank of
A.


2 −4 6 8
2 −1 3 2
4 −5 9 10
0 −1 1 2

a)


2 −1 1

−2 1 1
4 −2 3

−6 3 0

b)


1 −1 5 −2 2
2 −2 −2 5 1
0 0 −12 9 −3

−1 1 7 −7 1

c)

[
1 2 −1 3

−3 −6 3 −2

]
d)

b.
 2

−1
1

 ,

 0
0
1

 ;




2
−2

4
−6

 ,


1
1
3
0


 ;2
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d.




1
2

−1
3

 ,


0
0
0
1


 ;
{[

1
−3

]
,
[

3
−2

]}
;2

Exercise 5.4.2 In each case find a basis of the
subspace U .

a. U = span{(1, −1, 0, 3), (2, 1, 5, 1), (4, −2, 5, 7)}

b. U = span{(1, −1, 2, 5, 1), (3, 1, 4, 2, 7),
(1, 1, 0, 0, 0), (5, 1, 6, 7, 8)}

c. U = span




1
1
0
0

 ,


0
0
1
1

 ,


1
0
1
0

 ,


0
1
0
1




d.

U = span


 1

5
−6

 ,

 2
6

−8

 ,

 3
7

−10

 ,

 4
8

12



b.




1
1
0
0
0

 ,


0

−2
2
5
1

 ,


0
0
2

−3
6




d.


 1

5
−6

 ,

 0
1

−1

 0
0
1


Exercise 5.4.3

a. Can a 3×4 matrix have independent columns?
Independent rows? Explain.

b. If A is 4× 3 and rank A = 2, can A have in-
dependent columns? Independent rows? Ex-
plain.

c. If A is an m×n matrix and rank A = m, show
that m ≤ n.

d. Can a nonsquare matrix have its rows inde-
pendent and its columns independent? Ex-
plain.

e. Can the null space of a 3×6 matrix have di-
mension 2? Explain.

f. Suppose that A is 5×4 and null (A) = Rx for
some column x 6= 0. Can dim ( im A) = 2?

b. No; no

d. No

f. Otherwise, if A is m × n, we have m =
dim ( row A) = rank A = dim (col A) = n

Exercise 5.4.4 If A is m×n show that

col (A) = {Ax | x in Rn}

Let A =
[

c1 . . . cn
]
. Then col A =

span{c1, . . . , cn} = {x1c1 + · · · + xncn | xi in R} =
{Ax | x in Rn}.

Exercise 5.4.5 If A is m×n and B is n×m, show
that AB = 0 if and only if col B ⊆ null A.

Exercise 5.4.6 Show that the rank does not
change when an elementary row or column opera-
tion is performed on a matrix.

Exercise 5.4.7 In each case find a basis of the null
space of A. Then compute rank A and verify (1) of
Theorem 5.4.2.

a. A =


3 1 1
2 0 1
4 2 1
1 −1 1



b. A =


3 5 5 2 0
1 0 2 2 1
1 1 1 −2 −2

−2 0 −4 −4 −2



b. The basis is




6
0

−4
1
0

 ,


5
0

−3
0
1


 so the di-

mension is 2. Have rank A = 3 and n−3 = 2.

Exercise 5.4.8 Let A = cr where c 6= 0 is a column
in Rm and r 6= 0 is a row in Rn.
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a. Show that col A = span{c} and
row A = span{r}.

b. Find dim (null A).

c. Show that null A = null r.

b. n−1

Exercise 5.4.9 Let A be m × n with columns
c1, c2, . . . , cn.

a. If {c1, . . . , cn} is independent, show null A =
{0}.

b. If null A = {0}, show that {c1, . . . , cn} is in-
dependent.

b. If r1c1 + · · ·+ rncn = 0, let x = [r1, . . . , rn]
T .

Then Cx = r1c1 + · · ·+ rncn = 0, so x is in
null A = 0. Hence each ri = 0.

Exercise 5.4.10 Let A be an n×n matrix.

a. Show that A2 = 0 if and only if col A ⊆ null A.

b. Conclude that if A2 = 0, then rank A ≤ n
2 .

c. Find a matrix A for which col A = null A.

b. Write r = rank A. Then (a) gives r =
dim (col A ≤ dim (null A) = n− r.

Exercise 5.4.11 Let B be m×n and let AB be k×n.
If rank B = rank (AB), show that null B = null (AB).
[Hint: Theorem 5.4.1.]

Exercise 5.4.12 Give a careful argument why
rank (AT ) = rank A.

We have rank (A) = dim [col (A)] and rank (AT ) =
dim [ row (AT )]. Let {c1, c2, . . . , ck} be a basis of
col (A); it suffices to show that {cT

1 , cT
2 , . . . , cT

k } is a

basis of row (AT ). But if t1cT
1 +t2cT

2 + · · ·+tkcT
k = 0, t j

in R, then (taking transposes) t1c1+t2c2+ · · ·+tkck =
0 so each t j = 0. Hence {cT

1 , cT
2 , . . . , cT

k } is inde-
pendent. Given v in row (AT ) then vT is in col (A);
say vT = s1c1 + s2c2 + · · ·+ skck, s j in R: Hence
v = s1cT

1 + s2cT
2 + · · ·+ skcT

k , so {cT
1 , cT

2 , . . . , cT
k }

spans row (AT ), as required.

Exercise 5.4.13 Let A be an m× n matrix with
columns c1, c2, . . . , cn. If rank A = n, show that
{AT c1, AT c2, . . . , AT cn} is a basis of Rn.

Exercise 5.4.14 If A is m×n and b is m×1, show
that b lies in the column space of A if and only if
rank [A b] = rank A.

Exercise 5.4.15

a. Show that Ax = b has a solution if and only
if rank A = rank [A b]. [Hint: Exercises 5.4.12
and 5.4.14.]

b. If Ax = b has no solution, show that
rank [A b] = 1+ rank A.

b. Let {u1, . . . , ur} be a basis of col (A). Then
b is not in col (A), so {u1, . . . , ur, b} is
linearly independent. Show that col [A b] =
span{u1, . . . , ur, b}.

Exercise 5.4.16 Let X be a k×m matrix. If I is
the m×m identity matrix, show that I +XT X is in-

vertible. [Hint: I +XT X = AT A where A =

[
I
X

]
in

block form.]

Exercise 5.4.17 If A is m × n of rank r, show
that A can be factored as A = PQ where P is m× r
with r independent columns, and Q is r × n with

r independent rows. [Hint: Let UAV =

[
Ir 0
0 0

]
by Theorem 2.5.3, and write U−1 =

[
U1 U2
U3 U4

]
and

V−1 =

[
V1 V2
V3 V4

]
in block form, where U1 and V1 are

r× r.]

Exercise 5.4.18

a. Show that if A and B have independent
columns, so does AB.
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b. Show that if A and B have independent rows,
so does AB.

Exercise 5.4.19 A matrix obtained from A by
deleting rows and columns is called a submatrix
of A. If A has an invertible k × k submatrix, show

that rank A ≥ k. [Hint: Show that row and column
operations carry

A →
[

Ik P
0 Q

]
in block form.] Remark: It can be

shown that rank A is the largest integer r such that
A has an invertible r× r submatrix.
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5.5 Similarity and Diagonalization

In Section 3.3 we studied diagonalization of a square matrix A, and found important applications
(for example to linear dynamical systems). We can now utilize the concepts of subspace, basis, and
dimension to clarify the diagonalization process, reveal some new results, and prove some theorems
which could not be demonstrated in Section 3.3.

Before proceeding, we introduce a notion that simplifies the discussion of diagonalization, and
is used throughout the book.

Similar Matrices

Definition 5.11 Similar Matrices
If A and B are n×n matrices, we say that A and B are similar, and write A ∼ B, if
B = P−1AP for some invertible matrix P.

Note that A ∼ B if and only if B = QAQ−1 where Q is invertible (write P−1 = Q). The language of
similarity is used throughout linear algebra. For example, a matrix A is diagonalizable if and only
if it is similar to a diagonal matrix.

If A∼B, then necessarily B∼A. To see why, suppose that B=P−1AP. Then A=PBP−1 =Q−1BQ
where Q = P−1 is invertible. This proves the second of the following properties of similarity (the
others are left as an exercise):

1. A ∼ A for all square matrices A.
2. If A ∼ B, then B ∼ A. (5.2)
3. If A ∼ B and B ∼ A, then A ∼C.

These properties are often expressed by saying that the similarity relation ∼ is an equivalence
relation on the set of n×n matrices. Here is an example showing how these properties are used.

Example 5.5.1

If A is similar to B and either A or B is diagonalizable, show that the other is also
diagonalizable.

Solution. We have A ∼ B. Suppose that A is diagonalizable, say A ∼ D where D is diagonal.
Since B ∼ A by (2) of (5.2), we have B ∼ A and A ∼ D. Hence B ∼ D by (3) of (5.2), so B is
diagonalizable too. An analogous argument works if we assume instead that B is
diagonalizable.

Similarity is compatible with inverses, transposes, and powers:

If A ∼ B then A−1 ∼ B−1, AT ∼ BT , and Ak ∼ Bk for all integers k ≥ 1.
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The proofs are routine matrix computations using Theorem 3.3.1. Thus, for example, if A is
diagonalizable, so also are AT , A−1 (if it exists), and Ak (for each k ≥ 1). Indeed, if A ∼ D where D
is a diagonal matrix, we obtain AT ∼ DT , A−1 ∼ D−1, and Ak ∼ Dk, and each of the matrices DT ,
D−1, and Dk is diagonal.

We pause to introduce a simple matrix function that will be referred to later.

Definition 5.12 Trace of a Matrix
The trace tr A of an n×n matrix A is defined to be the sum of the main diagonal elements
of A.

In other words:
If A =

[
ai j
]

, then tr A = a11 +a22 + · · ·+ann.

It is evident that tr (A+B) = tr A+ tr B and that tr (cA) = c tr A holds for all n×n matrices A and
B and all scalars c. The following fact is more surprising.

Lemma 5.5.1
Let A and B be n×n matrices. Then tr (AB) = tr (BA).

Proof. Write A =
[
ai j
]

and B =
[
bi j
]
. For each i, the (i, i)-entry di of the matrix AB is given as

follows: di = ai1b1i +ai2b2i + · · ·+ainbni = ∑ j ai jb ji. Hence

tr (AB) = d1 +d2 + · · ·+dn = ∑
i

di = ∑
i

(
∑

j
ai jb ji

)

Similarly we have tr (BA) = ∑i(∑ j bi ja ji). Since these two double sums are the same, Lemma 5.5.1
is proved.

As the name indicates, similar matrices share many properties, some of which are collected in
the next theorem for reference.

Theorem 5.5.1
If A and B are similar n×n matrices, then A and B have the same determinant, rank, trace,
characteristic polynomial, and eigenvalues.

Proof. Let B = P−1AP for some invertible matrix P. Then we have

det B = det (P−1) det A det P = det A because det (P−1) = 1/ det P

Similarly, rank B = rank (P−1AP) = rank A by Corollary 5.4.3. Next Lemma 5.5.1 gives

tr (P−1AP) = tr
[
P−1(AP)

]
= tr

[
(AP)P−1]= tr A
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As to the characteristic polynomial,

cB(x) = det (xI −B) = det{x(P−1IP)−P−1AP}
= det{P−1(xI −A)P}
= det (xI −A)
= cA(x)

Finally, this shows that A and B have the same eigenvalues because the eigenvalues of a matrix are
the roots of its characteristic polynomial.

Example 5.5.2

Sharing the five properties in Theorem 5.5.1 does not guarantee that two matrices are

similar. The matrices A =

[
1 1
0 1

]
and I =

[
1 0
0 1

]
have the same determinant, rank,

trace, characteristic polynomial, and eigenvalues, but they are not similar because P−1IP = I
for any invertible matrix P.

Diagonalization Revisited

Recall that a square matrix A is diagonalizable if there exists an invertible matrix P such that
P−1AP = D is a diagonal matrix, that is if A is similar to a diagonal matrix D. Unfortunately, not

all matrices are diagonalizable, for example
[

1 1
0 1

]
(see Example 3.3.10). Determining whether

A is diagonalizable is closely related to the eigenvalues and eigenvectors of A. Recall that a number
λ is called an eigenvalue of A if Ax = λx for some nonzero column x in Rn, and any such nonzero
vector x is called an eigenvector of A corresponding to λ (or simply a λ -eigenvector of A). The
eigenvalues and eigenvectors of A are closely related to the characteristic polynomial cA(x) of A,
defined by

cA(x) = det (xI −A)

If A is n×n this is a polynomial of degree n, and its relationship to the eigenvalues is given in the
following theorem (a repeat of Theorem 3.3.2).

Theorem 5.5.2
Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I −A)x = 0

of linear equations with λ I −A as coefficient matrix.
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Example 5.5.3

Show that the eigenvalues of a triangular matrix are the main diagonal entries.

Solution. Assume that A is triangular. Then the matrix xI −A is also triangular and has
diagonal entries (x−a11), (x−a22), . . . , (x−ann) where A =

[
ai j
]
. Hence Theorem 3.1.4 gives

cA(x) = (x−a11)(x−a22) · · ·(x−ann)

and the result follows because the eigenvalues are the roots of cA(x).

Theorem 3.3.4 asserts (in part) that an n×n matrix A is diagonalizable if and only if it has n
eigenvectors x1, . . . , xn such that the matrix P=

[
x1 · · · xn

]
with the xi as columns is invertible.

This is equivalent to requiring that {x1, . . . , xn} is a basis of Rn consisting of eigenvectors of A.
Hence we can restate Theorem 3.3.4 as follows:

Theorem 5.5.3
Let A be an n×n matrix.

1. A is diagonalizable if and only if Rn has a basis {x1, x2, . . . , xn} consisting of
eigenvectors of A.

2. When this is the case, the matrix P =
[

x1 x2 · · · xn
]

is invertible and
P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the eigenvalue of A
corresponding to xi.

The next result is a basic tool for determining when a matrix is diagonalizable. It reveals an
important connection between eigenvalues and linear independence: Eigenvectors corresponding to
distinct eigenvalues are necessarily linearly independent.

Theorem 5.5.4
Let x1, x2, . . . , xk be eigenvectors corresponding to distinct eigenvalues λ1, λ2, . . . , λk of an
n×n matrix A. Then {x1, x2, . . . , xk} is a linearly independent set.

Proof. We use induction on k. If k = 1, then {x1} is independent because x1 6= 0. In general,
suppose the theorem is true for some k ≥ 1. Given eigenvectors {x1, x2, . . . , xk+1}, suppose a
linear combination vanishes:

t1x1 + t2x2 + · · ·+ tk+1xk+1 = 0 (5.3)

We must show that each ti = 0. Left multiply (5.3) by A and use the fact that Axi = λixi to get

t1λ1x1 + t2λ2x2 + · · ·+ tk+1λk+1xk+1 = 0 (5.4)

If we multiply (5.3) by λ1 and subtract the result from (5.4), the first terms cancel and we obtain

t2(λ2 −λ1)x2 + t3(λ3 −λ1)x3 + · · ·+ tk+1(λk+1 −λ1)xk+1 = 0
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Since x2, x3, . . . , xk+1 correspond to distinct eigenvalues λ2, λ3, . . . , λk+1, the set {x2, x3, . . . , xk+1}
is independent by the induction hypothesis. Hence,

t2(λ2 −λ1) = 0, t3(λ3 −λ1) = 0, . . . , tk+1(λk+1 −λ1) = 0

and so t2 = t3 = · · · = tk+1 = 0 because the λi are distinct. Hence (5.3) becomes t1x1 = 0, which
implies that t1 = 0 because x1 6= 0. This is what we wanted.

Theorem 5.5.4 will be applied several times; we begin by using it to give a useful condition for
when a matrix is diagonalizable.

Theorem 5.5.5
If A is an n×n matrix with n distinct eigenvalues, then A is diagonalizable.

Proof. Choose one eigenvector for each of the n distinct eigenvalues. Then these eigenvectors are
independent by Theorem 5.5.4, and so are a basis of Rn by Theorem 5.2.7. Now use Theorem 5.5.3.

Example 5.5.4

Show that A =

 1 0 0
1 2 3

−1 1 0

 is diagonalizable.

Solution. A routine computation shows that cA(x) = (x−1)(x−3)(x+1) and so has
distinct eigenvalues 1, 3, and −1. Hence Theorem 5.5.5 applies.

However, a matrix can have multiple eigenvalues as we saw in Section 3.3. To deal with this sit-
uation, we prove an important lemma which formalizes a technique that is basic to diagonalization,
and which will be used three times below.
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Lemma 5.5.2
Let {x1, x2, . . . , xk} be a linearly independent set of eigenvectors of an n×n matrix A,
extend it to a basis {x1, x2, . . . , xk, . . . , xn} of Rn, and let

P =
[

x1 x2 · · · xn
]

be the (invertible) n×n matrix with the xi as its columns. If λ1, λ2, . . . , λk are the (not
necessarily distinct) eigenvalues of A corresponding to x1, x2, . . . , xk respectively, then
P−1AP has block form

P−1AP =

[
diag (λ1, λ2, . . . , λk) B

0 A1

]
where B has size k× (n− k) and A1 has size (n− k)× (n− k).

Proof. If {e1, e2, . . . , en} is the standard basis of Rn, then[
e1 e2 . . . en

]
= In = P−1P = P−1 [ x1 x2 · · · xn

]
=
[

P−1x1 P−1x2 · · · P−1xn
]

Comparing columns, we have P−1xi = ei for each 1 ≤ i ≤ n. On the other hand, observe that

P−1AP = P−1A
[

x1 x2 · · · xn
]
=
[
(P−1A)x1 (P−1A)x2 · · · (P−1A)xn

]
Hence, if 1 ≤ i ≤ k, column i of P−1AP is

(P−1A)xi = P−1(λixi) = λi(P−1xi) = λiei

This describes the first k columns of P−1AP, and Lemma 5.5.2 follows.

Note that Lemma 5.5.2 (with k = n) shows that an n×n matrix A is diagonalizable if Rn has a basis
of eigenvectors of A, as in (1) of Theorem 5.5.3.

Definition 5.13 Eigenspace of a Matrix

If λ is an eigenvalue of an n×n matrix A, define the eigenspace of A corresponding to λ by

Eλ (A) = {x in Rn | Ax = λx}

This is a subspace of Rn and the eigenvectors corresponding to λ are just the nonzero vectors in
Eλ (A). In fact Eλ (A) is the null space of the matrix (λ I −A):

Eλ (A) = {x | (λ I −A)x = 0}= null (λ I −A)

Hence, by Theorem 5.4.2, the basic solutions of the homogeneous system (λ I −A)x = 0 given by
the gaussian algorithm form a basis for Eλ (A). In particular

dim Eλ (A) is the number of basic solutions x of (λ I −A)x = 0 (5.5)
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Now recall (Definition 3.7) that the multiplicity11 of an eigenvalue λ of A is the number of times
λ occurs as a root of the characteristic polynomial cA(x) of A. In other words, the multiplicity of λ

is the largest integer m ≥ 1 such that

cA(x) = (x−λ )mg(x)

for some polynomial g(x). Because of (5.5), the assertion (without proof) in Theorem 3.3.5 can be
stated as follows: A square matrix is diagonalizable if and only if the multiplicity of each eigenvalue
λ equals dim [Eλ (A)]. We are going to prove this, and the proof requires the following result which
is valid for any square matrix, diagonalizable or not.

Lemma 5.5.3
Let λ be an eigenvalue of multiplicity m of a square matrix A. Then dim [Eλ (A)]≤ m.

Proof. Write dim [Eλ (A)] = d. It suffices to show that cA(x) = (x−λ )dg(x) for some polynomial
g(x), because m is the highest power of (x−λ ) that divides cA(x). To this end, let {x1, x2, . . . , xd}
be a basis of Eλ (A). Then Lemma 5.5.2 shows that an invertible n×n matrix P exists such that

P−1AP =

[
λ Id B
0 A1

]
in block form, where Id denotes the d×d identity matrix. Now write A′ = P−1AP and observe that
cA′(x) = cA(x) by Theorem 5.5.1. But Theorem 3.1.5 gives

cA(x) = cA′(x) = det (xIn −A′) = det
[
(x−λ )Id −B

0 xIn−d −A1

]
= det [(x−λ )Id] det [(xIn−d −A1)]

= (x−λ )dg(x)

where g(x) = cA1(x). This is what we wanted.

It is impossible to ignore the question when equality holds in Lemma 5.5.3 for each eigenvalue
λ . It turns out that this characterizes the diagonalizable n×n matrices A for which cA(x) factors
completely over R. By this we mean that cA(x) = (x− λ1)(x− λ2) · · ·(x− λn), where the λi are
real numbers (not necessarily distinct); in other words, every eigenvalue of A is real. This need not

happen (consider A =

[
0 −1
1 0

]
), and we investigate the general case below.

Theorem 5.5.6
The following are equivalent for a square matrix A for which cA(x) factors completely.

1. A is diagonalizable.

2. dim [Eλ (A)] equals the multiplicity of λ for every eigenvalue λ of the matrix A.

11This is often called the algebraic multiplicity of λ .
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Proof. Let A be n× n and let λ1, λ2, . . . , λk be the distinct eigenvalues of A. For each i, let mi
denote the multiplicity of λi and write di = dim

[
Eλi(A)

]
. Then

cA(x) = (x−λ1)
m1(x−λ2)

m2 . . .(x−λk)
mk

so m1 + · · ·+mk = n because cA(x) has degree n. Moreover, di ≤ mi for each i by Lemma 5.5.3.
(1) ⇒ (2). By (1), Rn has a basis of n eigenvectors of A, so let ti of them lie in Eλi(A) for each

i. Since the subspace spanned by these ti eigenvectors has dimension ti, we have ti ≤ di for each i by
Theorem 5.2.4. Hence

n = t1 + · · ·+ tk ≤ d1 + · · ·+dk ≤ m1 + · · ·+mk = n

It follows that d1 + · · ·+dk = m1 + · · ·+mk so, since di ≤ mi for each i, we must have di = mi. This
is (2).

(2) ⇒ (1). Let Bi denote a basis of Eλi(A) for each i, and let B = B1 ∪ ·· · ∪Bk. Since each Bi
contains mi vectors by (2), and since the Bi are pairwise disjoint (the λi are distinct), it follows that
B contains n vectors. So it suffices to show that B is linearly independent (then B is a basis of Rn).
Suppose a linear combination of the vectors in B vanishes, and let yi denote the sum of all terms
that come from Bi. Then yi lies in Eλi(A), so the nonzero yi are independent by Theorem 5.5.4 (as
the λi are distinct). Since the sum of the yi is zero, it follows that yi = 0 for each i. Hence all
coefficients of terms in yi are zero (because Bi is independent). Since this holds for each i, it shows
that B is independent.

Example 5.5.5

If A =

 5 8 16
4 1 8

−4 −4 −11

 and B =

 2 1 1
2 1 −2

−1 0 −2

 show that A is diagonalizable but B is

not.

Solution. We have cA(x) = (x+3)2(x−1) so the eigenvalues are λ1 =−3 and λ2 = 1. The
corresponding eigenspaces are Eλ1(A) = span{x1, x2} and Eλ2(A) = span{x3} where

x1 =

 −1
1
0

 , x2 =

 −2
0
1

 , x3 =

 2
1

−1


as the reader can verify. Since {x1, x2} is independent, we have dim (Eλ1(A)) = 2 which is
the multiplicity of λ1. Similarly, dim (Eλ2(A)) = 1 equals the multiplicity of λ2. Hence A is
diagonalizable by Theorem 5.5.6, and a diagonalizing matrix is P =

[
x1 x2 x3

]
.

Turning to B, cB(x) = (x+1)2(x−3) so the eigenvalues are λ1 =−1 and λ2 = 3. The
corresponding eigenspaces are Eλ1(B) = span{y1} and Eλ2(B) = span{y2} where

y1 =

 −1
2
1

 , y2 =

 5
6

−1


Here dim (Eλ1(B)) = 1 is smaller than the multiplicity of λ1, so the matrix B is not
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diagonalizable, again by Theorem 5.5.6. The fact that dim (Eλ1(B)) = 1 means that there is
no possibility of finding three linearly independent eigenvectors.

Complex Eigenvalues

All the matrices we have considered have had real eigenvalues. But this need not be the case:

The matrix A =

[
0 −1
1 0

]
has characteristic polynomial cA(x) = x2 + 1 which has no real roots.

Nonetheless, this matrix is diagonalizable; the only difference is that we must use a larger set of
scalars, the complex numbers. The basic properties of these numbers are outlined in Appendix ??.

Indeed, nearly everything we have done for real matrices can be done for complex matrices.
The methods are the same; the only difference is that the arithmetic is carried out with complex
numbers rather than real ones. For example, the gaussian algorithm works in exactly the same way
to solve systems of linear equations with complex coefficients, matrix multiplication is defined the
same way, and the matrix inversion algorithm works in the same way.

But the complex numbers are better than the real numbers in one respect: While there are
polynomials like x2+1 with real coefficients that have no real root, this problem does not arise with
the complex numbers: Every nonconstant polynomial with complex coefficients has a complex root,
and hence factors completely as a product of linear factors. This fact is known as the fundamental
theorem of algebra.12

Example 5.5.6

Diagonalize the matrix A =

[
0 −1
1 0

]
.

Solution. The characteristic polynomial of A is

cA(x) = det (xI −A) = x2 +1 = (x− i)(x+ i)

where i2 =−1. Hence the eigenvalues are λ1 = i and λ2 =−i, with corresponding

eigenvectors x1 =

[
1

−i

]
and x2 =

[
1
i

]
. Hence A is diagonalizable by the complex version

of Theorem 5.5.5, and the complex version of Theorem 5.5.3 shows that

P =
[

x1 x2
]
=

[
1 1

−i i

]
is invertible and P−1AP =

[
λ1 0
0 λ2

]
=

[
i 0
0 −i

]
. Of course,

this can be checked directly.

We shall return to complex linear algebra in Section ??.
12This was a famous open problem in 1799 when Gauss solved it at the age of 22 in his Ph.D. dissertation.
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Symmetric Matrices13

On the other hand, many of the applications of linear algebra involve a real matrix A and, while
A will have complex eigenvalues by the fundamental theorem of algebra, it is always of interest
to know when the eigenvalues are, in fact, real. While this can happen in a variety of ways, it
turns out to hold whenever A is symmetric. This important theorem will be used extensively later.
Surprisingly, the theory of complex eigenvalues can be used to prove this useful result about real
eigenvalues.

Let z denote the conjugate of a complex number z. If A is a complex matrix, the conjugate
matrix A is defined to be the matrix obtained from A by conjugating every entry. Thus, if A =

[
zi j
]
,

then A =
[
zi j
]
. For example,

If A =

[
−i+2 5

i 3+4i

]
then A =

[
i+2 5
−i 3−4i

]
Recall that z+w = z+w and zw = z w hold for all complex numbers z and w. It follows that if A
and B are two complex matrices, then

A+B = A+B, AB = A B and λA = λ A

hold for all complex scalars λ . These facts are used in the proof of the following theorem.

Theorem 5.5.7
Let A be a symmetric real matrix. If λ is any complex eigenvalue of A, then λ is real.14

Proof. Observe that A = A because A is real. If λ is an eigenvalue of A, we show that λ is real by
showing that λ = λ . Let x be a (possibly complex) eigenvector corresponding to λ , so that x 6= 0
and Ax = λx. Define c = xT x.

If we write x =


z1
z2
...

zn

 where the zi are complex numbers, we have

c = xT x = z1z1 + z2z2 + · · ·+ znzn = |z1|2 + |z2|2 + · · ·+ |zn|2

Thus c is a real number, and c > 0 because at least one of the zi 6= 0 (as x 6= 0). We show that
λ = λ by verifying that λc = λc. We have

λc = λ (xT x) = (λx)T x = (Ax)T x = xT AT x

At this point we use the hypothesis that A is symmetric and real. This means AT = A = A so we
continue the calculation:

13This discussion uses complex conjugation and absolute value. These topics are discussed in Appendix ??.
14This theorem was first proved in 1829 by the great French mathematician Augustin Louis Cauchy (1789–1857).
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λc = xT AT x = xT (A x) = xT (Ax) = xT (λx)
= xT (λ x)
= λxT x
= λc

as required.

The technique in the proof of Theorem 5.5.7 will be used again when we return to complex linear
algebra in Section ??.

Example 5.5.7

Verify Theorem 5.5.7 for every real, symmetric 2×2 matrix A.

Solution. If A =

[
a b
b c

]
we have cA(x) = x2 − (a+ c)x+(ac−b2), so the eigenvalues are

given by λ = 1
2 [(a+ c)±

√
(a+ c)2 −4(ac−b2)]. But here

(a+ c)2 −4(ac−b2) = (a− c)2 +4b2 ≥ 0

for any choice of a, b, and c. Hence, the eigenvalues are real numbers.

Exercises for 5.5

Exercise 5.5.1 By computing the trace, determi-
nant, and rank, show that A and B are not similar
in each case.

a. A =

[
1 2
2 1

]
, B =

[
1 1

−1 1

]

b. A =

[
3 1
2 −1

]
, B =

[
1 1
2 1

]

c. A =

[
2 1
1 −1

]
, B =

[
3 0
1 −1

]

d. A =

[
3 1

−1 2

]
, B =

[
2 −1
3 2

]

e. A =

 2 1 1
1 0 1
1 1 0

, B =

 1 −2 1
−2 4 −2
−3 6 −3



f. A =

 1 2 −3
1 −1 2
0 3 −5

, B =

 −2 1 3
6 −3 −9
0 0 0



b. traces = 2, ranks = 2, but det A =−5, det B =
−1

d. ranks = 2, determinants = 7, but tr A = 5,
tr B = 4

f. traces =−5, determinants = 0, but rank A= 2,
rank B = 1

Exercise 5.5.2 Show that


1 2 −1 0
2 0 1 1
1 1 0 −1
4 3 0 0

 and
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1 −1 3 0

−1 0 1 1
0 −1 4 1
5 −1 −1 −4

 are not similar.

Exercise 5.5.3 If A ∼ B, show that:

AT ∼ BTa) A−1 ∼ B−1b)
rA ∼ rB for r in Rc) An ∼ Bn for n ≥ 1d)

b. If B = P−1AP, then B−1 = P−1A−1(P−1)−1 =
P−1A−1P.

Exercise 5.5.4 In each case, decide whether the
matrix A is diagonalizable. If so, find P such that
P−1AP is diagonal. 1 0 0

1 2 1
0 0 1

a)

 3 0 6
0 −3 0
5 0 2

b)

 3 1 6
2 1 0

−1 0 −3

c)

 4 0 0
0 2 2
2 3 1

d)

b. Yes, P =

 −1 0 6
0 1 0
1 0 5

, P−1AP = −3 0 0
0 −3 0
0 0 8


d. No, cA(x) = (x+1)(x−4)2 so λ = 4 has multi-

plicity 2. But dim (E4) = 1 so Theorem 5.5.6
applies.

Exercise 5.5.5 If A is invertible, show that AB is
similar to BA for all B.

Exercise 5.5.6 Show that the only matrix similar
to a scalar matrix A = rI, r in R, is A itself.

Exercise 5.5.7 Let λ be an eigenvalue of A with
corresponding eigenvector x. If B = P−1AP is similar
to A, show that P−1x is an eigenvector of B corre-
sponding to λ .

Exercise 5.5.8 If A∼B and A has any of the follow-
ing properties, show that B has the same property.

a. Idempotent, that is A2 = A.

b. Nilpotent, that is Ak = 0 for some k ≥ 1.

c. Invertible.

b. If B=P−1AP and Ak = 0, then Bk =(P−1AP)k =
P−1AkP = P−10P = 0.

Exercise 5.5.9 Let A denote an n×n upper trian-
gular matrix.

a. If all the main diagonal entries of A are dis-
tinct, show that A is diagonalizable.

b. If all the main diagonal entries of A are equal,
show that A is diagonalizable only if it is al-
ready diagonal.

c. Show that

 1 0 1
0 1 0
0 0 2

 is diagonalizable but

that

 1 1 0
0 1 0
0 0 2

 is not diagonalizable.

b. The eigenvalues of A are all equal (they are the
diagonal elements), so if P−1AP = D is diago-
nal, then D = λ I. Hence A = P−1(λ I)P = λ I.

Exercise 5.5.10 Let A be a diagonalizable n× n
matrix with eigenvalues λ1, λ2, . . . , λn (including
multiplicities). Show that:

a. det A = λ1λ2 · · ·λn

b. tr A = λ1 +λ2 + · · ·+λn

b. A is similar to D = diag (λ1, λ2, . . . , λn) so
(Theorem 5.5.1) tr A= tr D= λ1+λ2+ · · ·+λn.

Exercise 5.5.11 Given a polynomial p(x) = r0 +
r1x + · · ·+ rnxn and a square matrix A, the matrix
p(A) = r0I + r1A + · · ·+ rnAn is called the evalua-
tion of p(x) at A. Let B = P−1AP. Show that
p(B) = P−1 p(A)P for all polynomials p(x).

Exercise 5.5.12 Let P be an invertible n×n ma-
trix. If A is any n×n matrix, write TP(A) = P−1AP.
Verify that:
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TP(I) = Ia) TP(AB)= TP(A)TP(B)b)
TP(A + B) = TP(A) +
TP(B)

c) TP(rA) = rTP(A)d)

TP(Ak) = [TP(A)]k for k ≥ 1e)
If A is invertible, TP(A−1) = [TP(A)]−1.f)
If Q is invertible, TQ[TP(A)] = TPQ(A).g)

b. TP(A)TP(B) = (P−1AP)(P−1BP) = P−1(AB)P =
TP(AB).

Exercise 5.5.13

a. Show that two diagonalizable matrices are
similar if and only if they have the same eigen-
values with the same multiplicities.

b. If A is diagonalizable, show that A ∼ AT .

c. Show that A ∼ AT if A =

[
1 1
0 1

]
b. If A is diagonalizable, so is AT , and they have

the same eigenvalues. Use (a).

Exercise 5.5.14 If A is 2× 2 and diagonalizable,
show that C(A) = {X | XA = AX} has dimension 2 or
4. [Hint: If P−1AP = D, show that X is in C(A) if
and only if P−1XP is in C(D).]

Exercise 5.5.15 If A is diagonalizable and p(x) is
a polynomial such that p(λ ) = 0 for all eigenvalues
λ of A, show that p(A) = 0 (see Example 3.3.9). In
particular, show cA(A) = 0. [Remark: cA(A) = 0 for
all square matrices A—this is the Cayley-Hamilton
theorem, see Theorem ??.]

Exercise 5.5.16 Let A be n×n with n distinct real
eigenvalues. If AC = CA, show that C is diagonaliz-
able.

Exercise 5.5.17 Let A =

 0 a b
a 0 c
b c 0

 and

B =

 c a b
a b c
b c a

.

a. Show that x3 − (a2 + b2 + c2)x− 2abc has real
roots by considering A.

b. Show that a2 + b2 + c2 ≥ ab+ ac+ bc by con-
sidering B.

b. cB(x) = [x− (a+ b+ c)][x2 − k] where k = a2 +
b2 + c2 − [ab+ac+bc]. Use Theorem 5.5.7.

Exercise 5.5.18 Assume the 2×2 matrix A is sim-
ilar to an upper triangular matrix. If tr A= 0= tr A2,
show that A2 = 0.

Exercise 5.5.19 Show that A is similar to AT for all
2×2 matrices A. [Hint: Let A =

[
a b
c d

]
. If c = 0

treat the cases b = 0 and b 6= 0 separately. If c 6= 0,
reduce to the case c = 1 using Exercise 5.5.12(d).]

Exercise 5.5.20 Refer to Section ?? on linear re-
currences. Assume that the sequence x0, x1, x2, . . .
satisfies

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1

for all n ≥ 0. Define

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
r0 r1 r2 · · · rk−1

 , Vn =

 xn
xn+1

...
xn+k−1

 .

Then show that:
a. Vn = AnV0 for all n.

b. cA(x) = xk − rk−1xk−1 −·· ·− r1x− r0

c. If λ is an eigenvalue of A, the
eigenspace Eλ has dimension 1, and x =
(1, λ , λ 2, . . . , λ k−1)T is an eigenvector. [Hint:
Use cA(λ ) = 0 to show that Eλ = Rx.]

d. A is diagonalizable if and only if the eigenval-
ues of A are distinct. [Hint: See part (c) and
Theorem 5.5.4.]

e. If λ1, λ2, . . . , λk are distinct real eigenvalues,
there exist constants t1, t2, . . . , tk such that
xn = t1λ n

1 + · · ·+ tkλ n
k holds for all n. [Hint:

If D is diagonal with λ1, λ2, . . . , λk as the
main diagonal entries, show that An = PDnP−1

has entries that are linear combinations of
λ n

1 , λ n
2 , . . . , λ n

k .]

Exercise 5.5.21 Suppose A is 2×2 and A2 = 0. If
tr A 6= 0 show that A = 0.
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Supplementary Exercises for Chapter 5

Exercise 5.1 In each case either show that the
statement is true or give an example showing that it
is false. Throughout, x, y, z, x1, x2, . . . , xn denote
vectors in Rn.

a. If U is a subspace of Rn and x+y is in U , then
x and y are both in U .

b. If U is a subspace of Rn and rx is in U , then
x is in U .

c. If U is a nonempty set and sx+ ty is in U for
any s and t whenever x and y are in U , then
U is a subspace.

d. If U is a subspace of Rn and x is in U , then
−x is in U .

e. If {x, y} is independent, then {x, y, x+y}
is independent.

f. If {x, y, z} is independent, then {x, y} is
independent.

g. If {x, y} is not independent, then {x, y, z}
is not independent.

h. If all of x1, x2, . . . , xn are nonzero, then
{x1, x2, . . . , xn} is independent.

i. If one of x1, x2, . . . , xn is zero, then
{x1, x2, . . . , xn} is not independent.

j. If ax+by+cz = 0 where a, b, and c are in R,
then {x, y, z} is independent.

k. If {x, y, z} is independent, then ax+ by+
cz = 0 for some a, b, and c in R.

l. If {x1, x2, . . . , xn} is not independent, then
t1x1 + t2x2 + · · ·+ tnxn = 0 for ti in R not all
zero.

m. If {x1, x2, . . . , xn} is independent, then
t1x1 + t2x2 + · · ·+ tnxn = 0 for some ti in R.

n. Every set of four non-zero vectors in R4 is a
basis.

o. No basis of R3 can contain a vector with a
component 0.

p. R3 has a basis of the form {x, x+y, y} where
x and y are vectors.

q. Every basis of R5 contains one column of I5.

r. Every nonempty subset of a basis of R3 is
again a basis of R3.

s. If {x1, x2, x3, x4} and {y1, y2, y3, y4}
are bases of R4, then {x1 +y1, x2 +y2, x3 +
y3, x4 +y4} is also a basis of R4.

b. F

d. T

f. T

h. F

j. F

l. T

n. F

p. F

r. F
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